Skip to main content
Log in

Enhanced cycling rate performance of three-dimensional NiO as a positive electrode for hybrid supercapacitor

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrochemical supercapacitors are effectively involved and have potential attention in recent years due to the greatest advancements in energy storage system. In that, the electrode materials play a crucial role in achieving better electrochemical concert. In this work, three-dimensional NiO nanostructures were proposed as the high-capacity positive electrode for hybrid supercapacitors. In addition, the 3D-NiO electrode achieved a capacitance of 1100 F g−1 (605 C g−1) alone with 95.5% super stability retention. Similarly, a carbon-doped g-C3N4 nanosheet electrode involved as a negative electrode, which delivers a stability retention of 89.9%. Further, a hybrid supercapacitor device was made up of NiO as a positive, carbon-doped g-C3N4 as a negative material in an aqueous system, which shows the remarkable energy and power densities of 31.7 Wh kg−1 and 3625 W kg−1. The device delivers an admirable electrochemical performance that provides a huge active surface during the ion transportation process. These tolerable electrochemical results of this gathered hybrid supercapacitor device will be promoted as a various electronic tool in future generation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data are available on request.

Code availability

Not applicable.

References

  1. Naseri F, Karimi S, Farjah E, Schaltz E (2022) Supercapacitor management system: a comprehensive review of modeling, estimation, balancing, and protection techniques. Renew Sustain Energy Rev 155:111913. https://doi.org/10.1016/j.rser.2021.111913

    Article  CAS  Google Scholar 

  2. Xia X, Zhang D, Gao S et al (2023) Facile in-suit solid-phase synthesis of carbon-coated Ni2P nanospheres decorated on carbon nanotubes with high performance in both supercapacitors and lithium-ion batteries. J Energy Storage 68:107827. https://doi.org/10.1016/j.est.2023.107827

    Article  Google Scholar 

  3. Liang Y, Zhao C-Z, Yuan H et al (2019) A review of rechargeable batteries for portable electronic devices. InfoMat 1:6. https://doi.org/10.1002/inf2.12000

    Article  CAS  Google Scholar 

  4. Wang H, Ren X, Chen J et al (2023) Recent advances of emerging oxyhydroxide for electrochemical energy storage applications. J Power Sources 554:232309. https://doi.org/10.1016/j.jpowsour.2022.232309

    Article  CAS  Google Scholar 

  5. Mola BA, Pallavolu MR, Al-Asbahi BA, Noh Y, Jilcha SK, Kumar YA (2022) Design and construction of hierarchical MnFe2Ce4@ MnNiCe4 nanosheets on Ni foam as an advanced electrode for battery-type supercapacitor applications. J Energy Storage 51:104542. https://doi.org/10.1016/j.est.2022.104542

    Article  Google Scholar 

  6. Kumar YA, Mani G, Pallavolu MR et al (2022) Facile synthesis of efficient construction of tungsten disulfide/iron cobaltite nanocomposite grown on nickel foam as a battery-type energy material for electrochemical supercapacitors with superior performance. J Colloid Interface Sci 609:434. https://doi.org/10.1016/j.jcis.2021.11.193

    Article  CAS  PubMed  Google Scholar 

  7. Du X, Ren X, Xu C, Chen H (2023) Recent advances on the manganese cobalt oxides as electrode materials for supercapacitor applications: a comprehensive review. J Energy Storage 68:107672. https://doi.org/10.1016/j.est.2023.107672

    Article  Google Scholar 

  8. Attia SY, Mohamed SG, Barakat YF, Hassan HH, Zoubi WA (2022) Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Rev Inorg Chem 42(1):53–88. https://doi.org/10.1515/revic-2020-0022

    Article  CAS  Google Scholar 

  9. Şahin ME, Blaabjerg F, Sangwongwanich A (2022) A comprehensive review on supercapacitor applications and developments. Energies 15(3):674

    Article  Google Scholar 

  10. Kumar YA, Al-Asbahi BA, Pallavolu MR, Rao SS, Nallapureddy RR, Ramakrishna S (2022) Multiple structural defects in poor crystalline nickel-doped tungsten disulfide nanorods remarkably enhance supercapacitive performance. Int J Energy Res 46:14227. https://doi.org/10.1002/er.8137

    Article  CAS  Google Scholar 

  11. Ramkumar R, Dhakal G, Shim JJ, Kim WK (2022) NiO/Ni nanowafer aerogel electrodes for high performance supercapacitors. Nanomaterials 12:3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar YA, Kumar KD, Kim HJ (2020) Facile preparation of a highly efficient NiZn 2 O 4–NiO nanoflower composite grown on Ni foam as an advanced battery-type electrode material for high-performance electrochemical supercapacitors. Dalton Trans 49:3622. https://doi.org/10.1039/D0DT00268B

    Article  Google Scholar 

  13. Kumar SA, Saravanakumar B, Mohanty S, Ramadoss A (2022) Design of open-porous three-dimensional starfish-like Co3O4/Ni forest electrode for efficient energy storage devices. J Alloy Compd 896:163070. https://doi.org/10.1016/j.jallcom.2021.163070

    Article  CAS  Google Scholar 

  14. Moniruzzaman M, Anil Kumar Y, Pallavolu MR, Arbi HM, Alzahmi S, Obaidat IM (2022) Two-dimensional core-shell structure of cobalt-doped@MnO2 nanosheets grown on nickel foam as a binder-free battery-type electrode for supercapacitor application. Nanomaterials 12(18):3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian J, Li H, Xing Z et al (2012) One-pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation. Catal Sci Technol 2:2227

    Article  CAS  Google Scholar 

  16. Kumar YA, Sambasivam S, Hira SA et al (2020) Boosting the energy density of highly efficient flexible hybrid supercapacitors via selective integration of hierarchical nanostructured energy materials. Electrochim Acta 364:137318. https://doi.org/10.1016/j.electacta.2020.137318

    Article  CAS  Google Scholar 

  17. Kumar YA, Kim HJ (2018) Preparation and electrochemical performance of NiCo2O4@ NiCo2O4 composite nanoplates for high performance supercapacitor applications. New J Chem 42:19971. https://doi.org/10.1039/C8NJ05401K

    Article  Google Scholar 

  18. Shin S, Shin MW (2021) Nickel metal–organic framework (Ni-MOF) derived NiO/C@ CNF composite for the application of high performance self-standing supercapacitor electrode. Appl Surf Sci 540:148295. https://doi.org/10.1016/j.apsusc.2020.148295

    Article  CAS  Google Scholar 

  19. Shi H, Ma M, Liu P et al (2020) Preparation of petal-particle cross-linking flowerlike NiO for supercapacitor application. J Electroanal Chem 876:114481. https://doi.org/10.1016/j.jelechem.2020.114481

    Article  CAS  Google Scholar 

  20. Meftahi A, Shabani-Nooshabadi M, Reisi-Vanani A (2022) AgI/g-C3N4 nanocomposite as electrode material for supercapacitors: comparative study for its efficiency in three different aqueous electrolytes. Electrochim Acta 430:141052. https://doi.org/10.1016/j.electacta.2022.141052

    Article  CAS  Google Scholar 

  21. Meftahi A, Reisi-Vanani A, Shabani-Nooshabadi M (2023) Comparison of performance of CuI/g-C3N4 nanocomposites synthesized on Ni-foam and graphitic substrates as suitable electrode materials for supercapacitors. Fuel 331:125683. https://doi.org/10.1016/j.fuel.2022.125683

    Article  CAS  Google Scholar 

  22. Bai L, Huang H, Yu S, Zhang D, Huang H, Zhang Y (2022) Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. J Energy Chem 64:214. https://doi.org/10.1016/j.jechem.2021.04.057

    Article  CAS  Google Scholar 

  23. Al Kiey SA, Abdelhamid HN (2022) Metal-organic frameworks (MOFs)-derived Co3O4@ N-doped carbon as an electrode materials for supercapacitor. J Energy Storage 55:105449. https://doi.org/10.1016/j.est.2022.105449

    Article  Google Scholar 

  24. Liu X, Han X, Liang Z et al (2022) Phosphorous-doped 1T-MoS2 decorated nitrogen-doped g-C3N4 nanosheets for enhanced photocatalytic nitrogen fixation. J Colloid Interface Sci 605:320. https://doi.org/10.1016/j.jcis.2021.07.111

    Article  CAS  PubMed  Google Scholar 

  25. Qaraah FA, Mahyoub SA, Hezam A, Qaraah A, Xin F, Xiu G (2022) Synergistic effect of hierarchical structure and S-scheme heterojunction over O-doped g-C3N4/N-doped Nb2O5 for highly efficient photocatalytic CO2 reduction. Appl Catal B 315:121585. https://doi.org/10.1016/j.apcatb.2022.121585

    Article  CAS  Google Scholar 

  26. Faid AY, Barnett AO, Seland F, Sunde S (2020) Ni/NiO nanosheets for alkaline hydrogen evolution reaction: in situ electrochemical-Raman study. Electrochim Acta 361:137040. https://doi.org/10.1016/j.electacta.2020.137040

    Article  CAS  Google Scholar 

  27. Yi H, Wang H, Jing Y, Peng T, Wang X (2015) Asymmetric supercapacitors based on carbon nanotubes@ NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J Power Sources 285:281

    Article  CAS  Google Scholar 

  28. Yi T-F, Mei J, Guan B et al (2020) Construction of spherical NiO@ MnO2 with core-shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor. Ceram Int 46:421. https://doi.org/10.1016/j.ceramint.2019.08.278

    Article  CAS  Google Scholar 

  29. Kumar R, Matsuo R, Kishida K, Abdel-Galeil MM, Suda Y, Matsuda A (2019) Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode material with improved capacitive performance. Electrochim Acta 303:246. https://doi.org/10.1016/j.electacta.2019.02.084

    Article  CAS  Google Scholar 

  30. El Nady J, Shokry A, Khalil M, Ebrahim S, Elshaer AM, Anas M (2022) One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Sci Rep 12:3611. https://doi.org/10.1038/s41598-022-07483-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kulurumotlakatla DK, Yedluri AK, Kim H-J (2020) Hierarchical NiCo2S4 nanostructure as highly efficient electrode material for high-performance supercapacitor applications. J Energy Storage 31:101619. https://doi.org/10.1016/j.est.2020.101619

    Article  Google Scholar 

  32. Yoon J-H, Kumar YA, Sambasivam S et al (2020) Highly efficient copper-cobalt sulfide nano-reeds array with simplistic fabrication strategy for battery-type supercapacitors. J Energy Storage 32:101988. https://doi.org/10.1016/j.est.2020.101988

    Article  Google Scholar 

  33. Arshad N, Usman M, Adnan M, Ahsan MT, Rehman MR, Javed S et al (2023) Nanoengineering of NiO/MnO2/GO ternary composite for use in high-energy storage asymmetric supercapacitor and oxygen evolution reaction (OER). Nanomaterials 13(1):99

    Article  CAS  Google Scholar 

  34. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188. https://doi.org/10.1021/am400012h

    Article  CAS  PubMed  Google Scholar 

  35. Kumar YA, Kumar KD, Kim HJ (2020) Reagents assisted ZnCo2O4 nanomaterial for supercapacitor application. Electrochim Acta 330:135261. https://doi.org/10.1016/j.electacta.2019.135261

    Article  CAS  Google Scholar 

  36. Dhas SD, Maldar PS, Patil MD et al (2020) Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum 181:109646. https://doi.org/10.1016/j.vacuum.2020.109646

    Article  CAS  Google Scholar 

  37. Pore OC, Fulari AV, Parale VG et al (2022) Facile hydrothermal synthesis of NiO/rGO nanocomposite electrodes for supercapacitor and nonenzymatic glucose biosensing application. J Porous Mater 29:1991. https://doi.org/10.1007/s10934-022-01313-2

    Article  CAS  Google Scholar 

  38. Luo W, Zhang G, Cui Y et al (2017) One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4–MoS2 heterojunction electrodes for supercapacitors. J Mater Chem A 5:11278. https://doi.org/10.1039/C7TA02268A

    Article  CAS  Google Scholar 

  39. Wang B, Chen JS, Wang Z, Madhavi S, Lou XW (2012) Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv Energy Mater 2:1188. https://doi.org/10.1002/aenm.201200008

    Article  CAS  Google Scholar 

  40. Li S, Chen T, Wen J, Gui P, Fang G (2017) In situ grown Ni9S8 nanorod/O-MoS2 nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst. Nanotechnology 28:445407. https://doi.org/10.1088/1361-6528/aa89fa

    Article  CAS  PubMed  Google Scholar 

  41. Kasinathan D, Prabhakar P, Muruganandam P, Wiston BR, Mahalingam A, Sriram G (2022) Solution processed NiO/MoS2 heterostructure nanocomposite for supercapacitor electrode application. Energies 16(1):335

    Article  Google Scholar 

  42. Sun M, Ge S, Zhao J, McDonald R, Ma G (2022) Ruthenium(II) phosphine/picolylamine dichloride complexes hydrogenation and DFT calculations. Catalysts 12(4):377

    Article  CAS  Google Scholar 

  43. Gunasekaran SS, Gopalakrishnan A, Subashchandrabose R, Badhulika S (2021) Phytogenic generation of NiO nanoparticles as green-electrode material for high performance asymmetric supercapacitor applications. J Energy Storage 37:102412. https://doi.org/10.1016/j.est.2021.102412

  44. Vickraman P, Reddy BJ (2018) Synthesis and characterization of high porous carbon sphere@ nickel oxide core-shell nanocomposite for supercapacitor applications. J Electroanal Chem 823:342–349. https://doi.org/10.1016/j.jelechem.2018.06.009

    Article  CAS  Google Scholar 

  45. Kim H-J, Naresh B, Cho I-H et al (2021) An advanced nano-sticks & flake-type architecture of manganese-cobalt oxide as an effective electrode material for supercapacitor applications. J Energy Storage 40:102702. https://doi.org/10.1016/j.est.2021.102702

    Article  Google Scholar 

  46. Zhao B, Zhuang H, Fang T et al (2014) Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors. J Alloy Compd 597:291. https://doi.org/10.1016/j.jallcom.2014.01.192

    Article  CAS  Google Scholar 

  47. Liu M, Wang X, Zhu D et al (2017) Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chem Eng J 308:240. https://doi.org/10.1016/j.cej.2016.09.061

    Article  CAS  Google Scholar 

  48. Xu K, Zou R, Li W et al (2013) Carbon-coated mesoporous NiO nanoparticles as an electrode material for high performance electrochemical capacitors. New J Chem 37:4031. https://doi.org/10.1039/C3NJ00890H

    Article  CAS  Google Scholar 

  49. Li Q, Li C-L, Li Y-L et al (2017) Fabrication of hollow N-doped carbon supported ultrathin NiO nanosheets for high-performance supercapacitor. Inorg Chem Commun 86:140. https://doi.org/10.1016/j.inoche.2017.10.005

    Article  CAS  Google Scholar 

  50. Yedluri AK, Kim H-J (2018) Wearable super-high specific performance supercapacitors using a honeycomb with folded silk-like composite of NiCo2O4 nanoplates decorated with NiMoO4 honeycombs on nickel foam. Dalton Trans 47:15545. https://doi.org/10.1039/C8DT03598A

    Article  CAS  PubMed  Google Scholar 

  51. Trabelsi AB, Essam D, H. Alkallas F, M. Ahmed A, Rabia M (2022) Petal-like NiS-NiO/G-C3N4 nanocomposite for high-performance symmetric supercapacitor. Micromachines 13(12):2134

  52. Wu Z, Pu X, Ji X et al (2015) High energy density asymmetric supercapacitors from mesoporous NiCo2S4 nanosheets. Electrochim Acta 174:238. https://doi.org/10.1016/j.electacta.2015.06.011

    Article  CAS  Google Scholar 

  53. Ding R, Qi L, Jia M, Wang H (2013) Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors. Electrochim Acta 107:494. https://doi.org/10.1016/j.electacta.2013.05.114

    Article  CAS  Google Scholar 

  54. Yuan C, Li J, Hou L, Yang L, Shen L, Zhang X (2012) Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. J Mater Chem 22:16084. https://doi.org/10.1039/C2JM32351F

    Article  CAS  Google Scholar 

  55. Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28. https://doi.org/10.1016/j.jpowsour.2013.09.053

    Article  CAS  Google Scholar 

  56. Li L, Zhang X, Zhang Z et al (2016) A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors. J Mater Chem A 4:16635. https://doi.org/10.1039/C6TA06755G

    Article  CAS  Google Scholar 

  57. Senthilkumar ST, Selvan RK, Ulaganathan M, Melo JS (2014) Fabrication of Bi2O3|| AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochim Acta 115:518–524. https://doi.org/10.1016/j.electacta.2013.10.199

    Article  CAS  Google Scholar 

  58. Xu H, Hu X, Yang H, Sun Y, Hu C, Huang Y (2015) Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. Adv Energy Mater 5:1401882. https://doi.org/10.1002/aenm.201401882

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (Hamad Al-Lohedan) extend their appreciation for funding to Deanship of Scientific research, King Saud University for financial support through vice Deanship of Research Chairs. Research chair of surfactant.

Funding

Funding was associated in this work.

Author information

Authors and Affiliations

Authors

Contributions

T. Akila helped in writing—original draft and methodology, G. Alan Sibu was involved in writing—review & editing and data correction. P. Gayathri helped in writing—review & editing and data correction. V. Balasubramani helped in writing—review & editing and supervision. S. Selvaraj, Hamad Al-Lohedan, and Dhaifallah M. Al-Dhayan helped in writing—review & editing.

.

Corresponding author

Correspondence to V. Balasubramani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 392 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akila, T., Sibu, G.A., Gayathri, P. et al. Enhanced cycling rate performance of three-dimensional NiO as a positive electrode for hybrid supercapacitor. J Mater Sci 59, 8360–8373 (2024). https://doi.org/10.1007/s10853-024-09650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09650-0

Navigation