Skip to main content
Log in

Carbonization, hydrogenation and oxidation in the thermal degradation of expanded polystyrene

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbonization, oxidation and hydrogenation in expanded polystyrene (EPS) resulted from its thermal degradation at 120 °C are studied in this work using X-ray photoelectron spectroscopy. This hardly biodegradable polymer accumulates large quantities of solid wastes because it is commonly used in disposable dishes and containers. The objective of the work was to obtain a quantitative measure of its thermal degradation at four different depths from the surface, 0, 30, 60 and 90 nm based on the evolution of its chemical states as a function of the heating time. At least ten carbon chemical states were identified, five belonged to the EPS structure, and the others appeared due to the thermal degradation in the form of multiple chemical bonds. The results indicated that carbonization and dehydrogenation were the main degradation mechanisms of the thermal treatment. During the first 7 h of heating, carbonization increased 6.6%, hydrogenation decreased 6.2% and oxidation decreased 2.5%. The surface had more oxidation and behaved differently from the interior of the material. As most atoms in EPS are C, it was considered that the difference in carbonization percentages could represent the degradation percentage of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kannan P, Biernacki JJ, Visco JDP (2007) A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process. J Anal Appl Pyrolysis 78:162–171. doi:10.1016/j.jaap.2006.06.005

    Article  Google Scholar 

  2. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. doi:10.1016/j.biotechadv.2007.12.005

    Article  Google Scholar 

  3. Chauhan RS, Gopinath S, Razdan P, Delattre C, Nirmala GS, Natarajan R (2008) Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures. Waste Manag 28:2140–2145. doi:10.1016/j.wasman.2007.10.001

    Article  Google Scholar 

  4. Savoldelli J, Tomback D, Savoldelli H (2016) Breaking down polystyrene through the application of a two-step thermal degradation and bacterial method to produce usable by products. Waste Manag 60:123–126. doi:10.1016/j.wasman.2016.04.017

    Article  Google Scholar 

  5. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew Sustain Energy Rev 14:233–248. doi:10.1016/j.rser.2009.07.005

    Article  Google Scholar 

  6. Huang K, Tang L, Zhu Z, Ying W (2006) Continuous distribution kinetics for degradation of polystyrene in sub- and supercritical toluene. J Anal Appl Pyrolysis 76:186–190. doi:10.1016/j.jaap.2005.11.005

    Article  Google Scholar 

  7. Kannan P, Biernacki JJ, Visco JDP, Lambert W (2009) Kinetics of thermal decomposition of expandable polystyrene in different gaseous environments. J Anal Appl Pyrolysis 84:139–144. doi:10.1016/j.jaap.2009.01.003

    Article  Google Scholar 

  8. Chumbhale VR, Kim JS, Lee SB, Choi MJ (2004) Catalytic degradation of expandable polystyrene waste (EPSW) over mordenite and modified mordenities. J Mol Catal A Chem 222:133–141. doi:10.1016/j.molcata.2004.07.002

    Article  Google Scholar 

  9. Karaduman A, Simsek EH, Burhanettin C, Bilgesü AY (2002) Thermal degradation of polystyrene wastes in various solvents. J Anal Appl Pyrolysis 62:273–280

    Article  Google Scholar 

  10. Botelho G, Queirós A, Machado A, Frangiosa P, Ferreira J (2004) Enhancement of the thermooxidative degradability of polystyrene by chemical modification. Polym Degrad Stab 86:493–497. doi:10.1016/j.polymdegradstab.2004.05.022

    Article  Google Scholar 

  11. Kalogirou S (2007) Recent patents in solar energy collectors and applications. Recent Pat Eng 1:23–33. doi:10.2174/187221207779814644

    Article  Google Scholar 

  12. Cruz GJ, Olayo MG, López OG, Gómez LM, Morales J, Olayo R (2010) Nanospherical particles of polypyrrole synthesized and doped by plasma. Polymer 51:4314–4318. doi:10.1016/j.polymer.2010.07.024

    Article  Google Scholar 

  13. Zúñiga R, Cruz GJ, Olayo MG, Sánchez-Mendieta V, Gómez LM, González-Torres M, González-Salgado F, Morales J (2015) Synthesis and superficial characterization of plasma polyfuran thin films. Polym Bull 72:839–850. doi:10.1007/s00289-015-1309-4

    Article  Google Scholar 

  14. Olayo MG, Morales J, Cruz GJ, Olayo R, Ordoñez E, Barocio SR (2001) On the influence of electron energy on iodine doped polyaniline formation by plasma polymerization. J Polym Sci Part B Polym Phys 39:175–183. doi:10.1002/1099-0488(20010101)

    Article  Google Scholar 

  15. Olayo MG, Zúñiga R, González-Salgado F, Gómez LM, González-Torres M, Basurto R, Cruz GJ (2016) Structure and morphology of plasma polyfuran particles. Polym Bull 74(2):571–581. doi:10.1007/s00289-016-1730-3

    Article  Google Scholar 

  16. Watts JF, Woltstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, London

    Book  Google Scholar 

  17. Sherwood PMA (1976) Analysis of the X-ray photoelectron spectra of transition metal compounds using approximate molecular orbital theories. J Chem Soc Faraday Transit 2 Mol Chem Phys 72:1791–1804. doi:10.1039/F29767201791

    Article  Google Scholar 

  18. González-Torres M, Olayo MG, Cruz GJ, Gómez LM, Sánchez-Mendieta V, González-Salgado F (2014) XPS study of the chemical structure of plasma biocopolymers of pyrrole and ethylene glycol. Adv Chem 2014:1–8. doi:10.1155/2014/965920

    Article  Google Scholar 

  19. Cruz GJ, Gómez LM, Gonzalez-Torres M, Gonzalez-Salgado F, Basurto R, Colin E, Palacios JC, Olayo MG (2016) Polymerization mechanisms in plasma polyallylamine. J Mater Sci 52:1005–1013. doi:10.1007/s10853-016-0396-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Conacyt for the partial financial support to this work with the Ph.D. scholarship to Indira S. Mejía Torres, and R. Basurto from ININ for the support in the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo J. Cruz.

Ethics declarations

Conflict of interest

The authors of this work declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejía Torres, I.S., Colín-Orozco, E., Olayo, M.G. et al. Carbonization, hydrogenation and oxidation in the thermal degradation of expanded polystyrene. J Mater Sci 53, 2268–2276 (2018). https://doi.org/10.1007/s10853-017-1649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1649-6

Keywords

Navigation