Skip to main content
Log in

Insights into Pyrolysis of Nano-Polystyrene Particles: Thermochemical Behaviors and Kinetics Analysis

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The thermal degradation kinetics of nano-polystyrene particles with diameters of 60, 90, 160, and 225 nm were investigated in nitrogen atmosphere using thermogravimetric analysis (TGA). Various kinetic models were employed to determine the thermal degradation mechanism and kinetics. Nano-polystyrene particles have relatively lower thermal stability when compared to micro-polystyrene. Both differential thermo-gravimetric (DTG) data and apparent activation energies indicate that the thermal degradation of nano-polystyrene particles at 60 nm is a two-step reaction process where the second step plays a dominant role, while nano-polystyrene particles with diameter greater than 60 nm exhibit single-step degradation. Similar to most micro/macro polystyrene particles, DTG peaks of nano-polystyrene particles shift towards higher temperatures with increasing heating rates. Thermal degradation of nano-polystyrene particles under nitrogen atmosphere follows the first-order reaction model. However, the apparent activation energies increase (162-181 kJ·mol−1) with the increase of particle sizes (60-225 nm). This study could provide some insights into pyrolysis of nano-polystyrene particles and a safer process of manufacturing, storage and handling of nano-polystyrene particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krzysztof P., Njuguna J., Thermal degradation of polymeric materials. iSmithers Rapra Publishing, 2005.

    Google Scholar 

  2. Xia Y., Gates B., Yin Y., Lu Y., Monodispersed colloidal spheres: old materials with new applications. Advanced Materials, 2000, 12(10): 693–713.

    Article  Google Scholar 

  3. Rugge A., Ford W.T., Tolbert S.H., From a colloidal crystal to an interconnected colloidal array: a mechanism for a spontaneous rearrangement. Langmuir, 2003, 19(19): 7852–7861.

    Article  Google Scholar 

  4. Velev O.D., Lenhoff A.M., Colloidal crystals as templates for porous materials. Current Opinion in Colloid & Interface Science, 2000, 5(1–2): 56–63.

    Article  Google Scholar 

  5. Boccaccini A.R., Maquet V., Bioresorbable and bioactive polymer/bioglass® composites with tailored pore structure for tissue engineering applications. Composites Science and Technology, 2003, 63(16): 2417–2429.

    Article  Google Scholar 

  6. Johnston D.M., Johnson N.R., Role extension in disaster: employee behavior at the Beverly Hills Supper Club fire. Sociological Focus 1989, 22(1): 39–51.

    Google Scholar 

  7. Manuella Z., Chinese tv execs feeling heat from beijing high rise blaze. ENR: Engineering News-Record, 2009.

    Google Scholar 

  8. Jiang Y.T., Pan Y., Guan J., Yao J., Jiang J.C., Wang Q., Experimental studies on thermal analysis and explosion characteristics of superfine polystyrene powders. Journal of Thermal Analysis and Calorimetry, 2018, 131(2): 1471–1481.

    Article  Google Scholar 

  9. Sun H., Pan Y., Guan J., Jiang Y.T., Yao J., Jiang J.C., Wang Q.S., Thermal decomposition behaviors and dust explosion characteristics of nano-polystyrene. Journal of Thermal Analysis and Calorimetry, 2019, 135(4): 2359–2366.

    Article  Google Scholar 

  10. Hatanaka L.C., Ahmed L., Sachdeva S., Wang Q., Cheng Z., Mannan M. S., Thermal degradation and flammability of nanocomposites composed of silica cross-linked to poly (methyl methacrylate). Plastics, Rubber and Composites, 2016, 45(9): 375–381.

    Article  Google Scholar 

  11. Asakuma Y., Yamamoto T., Thermal analysis of resin composites with ellipsoidal filler considering thermal boundary resistance. Journal of Thermal Science, 2016, 25(5): 424–430.

    Article  ADS  Google Scholar 

  12. Peterson J.D., Vyazovkin S., Wight C.A., Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromolecular Chemistry and Physics, 2001, 202(6): 775–784.

    Article  Google Scholar 

  13. Kannan P., Biernacki J.J., Visco Jr D.P., A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process. Journal of Analytical and Applied Pyrolysis, 2007, 78(1): 162–171.

    Article  Google Scholar 

  14. Kannan P., Biernacki J.J., Visco Jr D.P., Lambert W., Kinetics of thermal decomposition of expandable polystyrene in different gaseous environments. Journal of Analytical and Applied Pyrolysis, 2009, 84(2): 139–144.

    Article  Google Scholar 

  15. Chen C., Duh Y., Shu C., Thermal polymerization of uninhibited styrene investigated by using microcalorimetry. Journal of Hazardous Materials, 2009, 163(2–3): 1385–1390.

    Article  Google Scholar 

  16. Shin H.Y., Bae S.Y., Thermal decomposition of polystyrene in supercritical methanol. Applied Polymer, 2008, 108(6): 3467–3472.

    Article  Google Scholar 

  17. Westerhout R.W.J., Waanders J., Kuipers J.A.M., van Swaaij W.P.M., Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data. Industrial & Engineering Chemistry Research 1997, 36(6): 1955–1964.

    Article  Google Scholar 

  18. Kim S.S., Kim S., Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chemical Engineering Journal, 2004, 98(1–2): 53–60.

    Article  Google Scholar 

  19. Cheng J., Pan Y., Yao J., Wang X., Pan F., Jiang J.C., Mechanisms and kinetics studies on the thermal decomposition of micron poly (methyl methacrylate) and polystyrene. Journal of Loss Prevention in the Process Industries, 2016, 40: 139–146.

    Article  Google Scholar 

  20. Wang L., Lei H., Liu J., Bu Q., Thermal decomposition behavior and kinetics for pyrolysis and catalytic pyrolysis of Douglas fir. RSC Advances, 2018, 8(4): 2196–2202.

    Article  Google Scholar 

  21. Ozawa T., Estimation of activation energy by isoconversion methods. Thermochimica Acta, 1992, 203: 159–165.

    Article  Google Scholar 

  22. Chrissafis K., Kinetics of thermal degradation of polymer. Journal of Thermal Analysis and Calorimetry, 2009, 95(1): 273–283.

    Article  Google Scholar 

  23. Sharp J.H., Wentworth S.A., Kinetic analysis of thermogravimetric data. Analytical Chemistry 1969, 41(14): 2060–2062.

    Article  Google Scholar 

  24. Meng Z., Yang D., Yan Y., Study of carbon black oxidation behavior under different heating rates. Journal of Thermal Analysis and Calorimetry, 2014, 118(1): 551–559.

    Article  Google Scholar 

  25. Vyazovkin S., Dranca I., Fan X., Advincula R., Kinetics of the thermal and thermo-oxidative degradation of a polystyrene-clay nanocomposite. Macromolecular Rapid Communications, 2004, 25(3): 498–503.

    Article  Google Scholar 

  26. Grassie N., Scott G., Polymer degradation and stabilization, CUP Archive, 1988.

    Google Scholar 

  27. Madorsky S.L., Thermal degradation of organic. Polymers. Interscience Publishers, New York, 1964.

    Google Scholar 

  28. Murata K., Hirano Y., Sakata Y., Uddin M.A., Basic study on a continuous flow reactor for thermal degradation of polymers. Journal of Analytical and Applied Pyrolysis, 2002, 65(1): 71–90.

    Article  Google Scholar 

  29. Zeng W.R., Zhou Y.J., Huo R., Yao B., Li Y.Z., The degradation kinetic study of polystyrene by a combination of non-isothermal differential and integral methods. Polymer Materials Science and Engineering, 2006, 22(5): 162–165.

    Google Scholar 

  30. Aguado R., Olazar M., Gaisán B., Prieto R., Bilbao J., Kinetics of polystyrene pyrolysis in a conical spouted bed reactor. Chemical Engineering Journal, 2003, 92(1–3): 91–99.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Program on Key Basic Research Project of China (2016YFC0801502, 2017YFC0804801) and National Natural Science Fund of China (No. 21436006, 21576136), and Jiangsu Project Plan for Outstanding Talents in Six Research Fields (No: 2015-XCL-019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Zhao or Yong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Zhao, J., Pan, Y. et al. Insights into Pyrolysis of Nano-Polystyrene Particles: Thermochemical Behaviors and Kinetics Analysis. J. Therm. Sci. 28, 763–771 (2019). https://doi.org/10.1007/s11630-019-1123-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1123-7

Keywords

Navigation