Skip to main content
Log in

Microalgae mixotrophic cultivation for β-galactosidase production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae present unexplored biotechnological potential and the ability to use different carbon sources in mixotrophic cultivation. Considering the need for efficient and low-cost industrial processes, the aim of this work was to evaluate the ability of microalgae and cyanobacteria to produce intra- and extracellular β-galactosidase. Eight species of Chlorophyta and Cyanophyta were cultivated in mixotrophic conditions with lactose as a carbon source. Dunaliella tertiolecta, Chlorella minutissima, and Nannochloropsis oculata were able to grow under mixotrophic conditions showing biomass production and growth rates higher than those of photoautotrophic cultures. β-Galactosidase extracellular production was 33.5 U L−1 on the 11th cultivation day for D. tertiolecta. For N. oculata and C. minutissima, the values were 29.6 and 11.02 U L−1 on the 14th and the 7th cultivation days, respectively. This study demonstrates the ability of microalgae to hydrolyze lactose under a mixotrophic regime and to outstanding great potential in the production of biomass and β-galactosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Berges JA, Harrisson PJ, Watanabe MM (2005) Recipes for freshwater and seawater media. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, Amsterdam, pp 429–538

    Google Scholar 

  • Angelo EA, Andrade DS, Filho AC (2014) Non-photoautotrophic cultivation of microalgae: an overview. Semina: Cienc Biol Saude 35(2):125–136

  • Benemann J, Woertz I, Lundquist T (2018) Autotrophic microalgae biomass production: from niche markets to commodities. Ind Biotechnol 14:3–10

    Article  Google Scholar 

  • Bentahar J, Doyen A, Beaulieu L, Deschênes J-S (2018) Investigation of β-galactosidase production by microalga Tetradesmus obliquus in determined growth conditions. J Appl Phycol. https://doi.org/10.1007/s10811-018-1550-y

  • Borowitzka MA (1988) Algal growth media and sources of cultures. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 456–465

    Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA, Siva CJ (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J Appl Phycol 19:567–590

    Article  Google Scholar 

  • Brasil BSAF, de Siqueira FG, Salum TFC, Zanette CM, Spier MR (2017) Microalgae and cyanobacteria as enzyme biofactories. Algal Res 25:76–89

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Carević M, Vukašinović-Sekulić M, Grbavčić S, Stojanović M, Mihailović M, Dimitrijević A, Bezbradica D (2015) Optimization of β-galactosidase production from lactic acid bacteria. Hemijska Industrija 69(3):7

    Article  Google Scholar 

  • Ceron Garcia MC, Garcia Camacho F, Sanchez Miron A, Fernandez Sevilla JM, Chisti Y, Molina Grima E (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16:689–694

    CAS  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Zielińska A (2012) Evaluation of growth yield of Spirulina (Arthrospira) sp. in photoautotrophic, heterotrophic and mixotrophic cultures. World J Microbiol Biotechnol 28:437–445

    Article  CAS  PubMed  Google Scholar 

  • Dagbagli S, Goksungur Y (2008) Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electron J Biotechnol 11 (4)

  • Doran PM (2013) Material balances. In: Bioprocess engineering principles (Second Edition). Academic Press, London, pp 87–137

    Chapter  Google Scholar 

  • Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (2014) Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics 15(1):582

    Article  PubMed  PubMed Central  Google Scholar 

  • Girard J-M, Roy M-L, Hafsa MB, Gagnon J, Faucheux N, Heitz M, Tremblay R, Deschênes J-S (2014) Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res 5:241–248

    Article  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60

    Chapter  Google Scholar 

  • Guillard RR (2005) Purification methods for microalgae. In: Andersen RA (ed) Algal Culturing Techniques. Elsevier Academic Press, Amsterdam, pp 117–132

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253

    Article  CAS  Google Scholar 

  • Husain Q (2010) β Galactosidases and their potential applications: a review. Crit Rev Biotechnol 30:41–62

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, Yoshida F (2009) Biochemical engineering: a textbook for engineers, chemists and biologists. Wiley-VCH, Germany

    Book  Google Scholar 

  • Li T, Zheng Y, Yu L, Chen S (2014) Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 66:204–213

    Article  CAS  Google Scholar 

  • McMillan JR, Watson IA, Ali M, Jaafar W (2013) Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Appl Energy 103:128–134

    Article  Google Scholar 

  • Montalescot V, Rinaldi T, Touchard R, Jubeau S, Frappart M, Jaouen P, Bourseau P, Marchal L (2015) Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Bioresour Technol 196:339–346

    Article  CAS  PubMed  Google Scholar 

  • Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264

    Article  CAS  Google Scholar 

  • Odjadjare EC, Mutanda T, Olaniran AO (2015) Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 37:37–52

    Article  CAS  PubMed  Google Scholar 

  • Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized beta-galactosidase in food processing industries. Enzyme Research 2010:16

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Pina-Pérez MC, Rivas A, Martínez A, Rodrigo D (2017) Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem 235:34–44

    Article  CAS  PubMed  Google Scholar 

  • Pires JCM (2015) Mass production of microalgae. In: Kim S-K (ed) Handbook of marine microalgae. Academic Press, Boston, pp 55–68

    Chapter  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JES, Martini M, Altomonte I, Salari F, Nardoni S, Sorce C, da Silva FLH, Andreucci A (2017) Production of Chlorella protothecoides biomass, chlorophyll and carotenoids using the dairy industry by-product scotta as a substrate. Biocatal Agric Biotechnol 11:207–213

    Article  Google Scholar 

  • Rizwan M, Mujtaba G, Lee K (2014) Influence of organic carbon sources on growth and lipid content of marine green alga Dunaliella tertiolecta. J Mar Biosci Biotechnol 6:68–75

    Article  Google Scholar 

  • Safi C, Camy S, Frances C, Varela MM, Badia EC, Pontalier P-Y, Vaca-Garcia C (2014) Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance. J Appl Phycol 26:1711–1718

    Article  CAS  Google Scholar 

  • Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35:291–311

    Article  Google Scholar 

  • Shene C, Monsalve María T, Vergara D, Lienqueo María E, Rubilar M (2015) High pressure homogenization of Nannochloropsis oculata for the extraction of intracellular components: effect of process conditions and culture age. Eur J Lipid Sci Technol 118:631–639

    Article  CAS  Google Scholar 

  • Silaban A, Bai R, Gutierrez-Wing MT, Negulescu II, Rusch KA (2014) Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng Life Sci 14:47–56

    Article  CAS  Google Scholar 

  • Specifications CC (1981) Food chemical codex. National Academy Press, Washington

    Google Scholar 

  • Stadler R, Wolf K, Hilgarth C, Tanner W, Sauer N (1995) Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a co-induced galactose-H+ symporter. Plant Physiol 107:33–41

  • Sukarni S, Hamidi N, Yanuhar U, Wardana ING (2014) Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. Int J Energy Environ Eng 5:279–290

    Article  CAS  Google Scholar 

  • Velu P, Peter MJ, Sanniyasi E (2015) Effect of various carbon sources on biochemical production in marine microalgae Nannochloropsis salina (Eustigmatophyceae), Dunaliella tertiolecta (Chlorophyceae) and Tetraselmis suecica (Chlorodendrophyceae). Int J Curr Microbiol Appl Sci 4(3):8

  • Vieira Salla AC, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV (2016) Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour Technol 209:133–141

    Article  CAS  PubMed  Google Scholar 

  • Vu CHT, Lee H-G, Chang YK, Oh H-M (2018) Axenic cultures for microalgal biotechnology: establishment, assessment, maintenance, and applications. Biotechnol Adv 36:380–396

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Li Y, Hu X, Su W, Zhong M (2015) Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans. Int J Mol Sci 16:7707–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Kim S-K (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhang P, Sun H, Chen M, Lu S, Li P (2014) Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa. Bioresour Technol 173:52–58

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164:1215–1224

    Article  CAS  PubMed  Google Scholar 

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Rigon Spier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanette, C.M., Mariano, A.B., Yukawa, Y.S. et al. Microalgae mixotrophic cultivation for β-galactosidase production. J Appl Phycol 31, 1597–1606 (2019). https://doi.org/10.1007/s10811-018-1720-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1720-y

Keywords

Navigation