Skip to main content
Log in

Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The influence of bead milling on the extraction of lipids and pigments by supercritical carbon dioxide was investigated in this study. Different operating parameters for the 3-h process were first tested on raw Chlorella vulgaris; 600 bar was the optimum pressure at 60 °C with a carbon dioxide flow rate of 30 g min−1. Under these operating conditions, 10 % of total lipid containing chlorophyll and carotenoids with 1.61 and 1.72 mg g−1 dry weight of microalga, respectively, has been recovered. Microscopic observation was used to assess a cell wall breakage through bead milling, which produced positive results in terms of increasing the yield of biomolecules of interest. Thus, under the same operating conditions, the yield of total lipid extract, chlorophyll and carotenoids increased significantly. Moreover, the addition of a polar co-solvent to a raw microalga had a considerable effect on the final extract. Overall, the addition of 5 % w v−1 ethanol to a raw microalga increased the total extract yield by 27 %, and bead milling increased the total extract yield by 16 %. Chlorophyll and carotenoids were also significantly affected by the addition of ethanol, with an 81 and 65 % increase with a raw microalga and a 61 and 52 % increase using bead milling, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abo-Shady AM, Mohamed YA, Lasheen T (1993) Chemical composition of the cell wall in some green algae species. Biol Plant 35:629–632

    Article  CAS  Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Crampon C, Boutin O, Badens E (2011) Supercritical carbon dioxide extraction of molecules of interest from microalgae and seaweeds. Ind Eng Chem Res 50:8941–8953

    Article  CAS  Google Scholar 

  • Crampon C, Mouahid A, Toudji SAA, Lépine O, Badens E (2013) Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. J Supercrit Fluids 79:337–344

    Article  CAS  Google Scholar 

  • Dejoye C, Vian MA, Lumia G, Bouscarle C, Charton F, Chemat F (2011) Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction. Int J Mol Sci 12:9332–9341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    Article  CAS  Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. SpringerBriefs in Microbiology. V, p 68

  • Gouveia L, Nobre BP, Marcelo FM, Mrejen S, Cardoso MT, Palavra AF, Mendes RL (2007) Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem 101:717–723

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Kapaun E, Reisser W (1995) A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae). Planta 197:577–582

    Article  CAS  Google Scholar 

  • Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, Hasegawa T (2009) Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol 84:657–661

    Article  CAS  Google Scholar 

  • Konishi F, Tanaka K, Himeno K, Taniguchi K, Nomoto K (1985) Antitumor effect induced by a hot water extract of Chlorella vulgaris (CE): resistance to Meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes. Cancer Immunol Immunother 19:73–78

    CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Progr 24:815–820

    CAS  Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9:1056–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mallick N, Mandal S, Singh AK, Bishai M, Dash A (2012) Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J Chem Technol Biotechnol 87:137–145

    Article  CAS  Google Scholar 

  • Mendes RL, Fernandes HL, Coelho J, Reis EC, Cabral JMS, Novais JM, Palavra AF (1995) Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem 53:99–103

    Article  CAS  Google Scholar 

  • Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334

    Article  CAS  Google Scholar 

  • Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki M, Kawano S (2012) Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour Technol 129C:150–155

    Google Scholar 

  • Nemkova Y, Kalina T (2000) Cell wall development, microfibril and pyrenoid structure in type strains of Chlorella vulgaris, C. kessleri, C. sorokiniana compared with C. luteoviridis (Trebouxiophyceae, Chlorophyta). Arch Hydrobiol 100:95–105

    Google Scholar 

  • Nobre BP, Villalobos F, Barragan BE, Oliveira AC, Batista AP, Marques PA, Mendes RL, Sovoda H, Palavara AF, Gouveia L (2013) A biorefinery from Nannochloropsis sp. microalga-extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136

    Article  CAS  PubMed  Google Scholar 

  • Payne MF, Rippingale RJ (2000) Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture 187:85–96

    Article  Google Scholar 

  • Raposo MF, de Morais RM, Bernardo de Morais AM (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252

    Article  PubMed  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Solomon EP, Berg LR, Martin DW (1999) Biology, 5th edn. Saunders College, Fort Worth

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem E 40:13–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the French National Research Agency (ANR) within the framework of the “Algoraffinerie” project. The authors would like to gratefully thank Alpha Biotech for providing the biomass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Safi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safi, C., Camy, S., Frances, C. et al. Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance. J Appl Phycol 26, 1711–1718 (2014). https://doi.org/10.1007/s10811-013-0212-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0212-3

Keywords

Navigation