Skip to main content

Advertisement

Log in

Amorphous Manganese–Cobalt Nanosheets as Efficient Catalysts for Hydrogen Evolution Reaction (HER)

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A facile and efficient electrocatalyst for hydrogen evolution reaction (HER) to produce hydrogen is very important for future energy. In this paper, amorphous manganese–cobalt nanosheets are successfully prepared by electrospinning on a foamed nickel substrate. It is found that the manganese (Mn) introduction in manganese–cobalt composites can simultaneously enhance their electrocatalytic performances. As a result, benefitting from the 3D structure, the self-supported Mn–Co hydroxides exhibits unprecedented HER activity with a relatively low overpotential of 100 mV at 10 mA cm−2 and has a possibility for the large-scale production of hydrogen.

Graphic Abstract

Amorphous PVP/Mn4Co nanofibers formed by electrospinning on Ni foam (NF) has remarkable catalytic activity and stability for HER after operation for 6 h in 1 M KOH, with a low overpotential of 0.1 V at 100 mA cm−2, a low Tafel slope of 65.4 mV dec−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qian Q, Wang F, Zhang X, Zhao Q (2021) Inorg Chem Commun 127:108555

    Article  CAS  Google Scholar 

  2. Akshay Kumar KP, Alduhaish O, Pumera M (2021) Electrochem Commun 125:106977

    Article  CAS  Google Scholar 

  3. Zeng Y, Cao Z, Liao J, Liang H, Wei B, Xu X, Xu H, Zheng J, Zhu W, Cavallo L, Wang Z (2021) Appl Catal B 292:120160

    Article  CAS  Google Scholar 

  4. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) ACS Catal 6:8069–8097

    Article  CAS  Google Scholar 

  5. Li X, Hao X, Abudula A, Guan G (2000) J Mater Chem A 4(2016):11973–12000

    Google Scholar 

  6. Taylor AK, Pauls AL, Paul MTY, Gates BD (2019). Assoc Iron Steel Technol. https://doi.org/10.1021/acsaem.9b01644

    Article  Google Scholar 

  7. Zhang M, Wang X (1902) Energy Environ Sci 2014:1902–1906

    Google Scholar 

  8. Mei G, Liang H, Wei B, Shi H, Ming F, Xu X, Wang Z (2018) Electrochim Acta 290:82–89

    Article  CAS  Google Scholar 

  9. Mohammed-Ibrahim J, Sun X (2019) J Energy Chem 34:111–160

    Article  Google Scholar 

  10. Zhao Q, Yang J, Liu M, Rui W, Feng P (2018) ACS Catal 8:5621–5629

    Article  CAS  Google Scholar 

  11. Liu T, Ma X, Liu D, Hao S, Du G, Ma Y, Asiri AM, Sun X, Chen L (2017) ACS Catal 7:98–102

    Article  CAS  Google Scholar 

  12. Song H, Li Y, Shang L, Tang Z, Zhang T, Lu S (2020) Nano Energy 72:104730

    Article  CAS  Google Scholar 

  13. Huo L, Liu B, Zhang G, Zhang J (2016) ACS Appl Mater Interfaces 8:18107–18118

    Article  CAS  PubMed  Google Scholar 

  14. Mei L, Gao X, Gao Z, Zhang Q, Yu X, Rogach AL, Zeng Z (2021) Chem Commun (Camb) 57:2879–2882

    Article  CAS  Google Scholar 

  15. Reier T, Oezaslan M, Strasser P (2012) ACS Catal 2:1765–1772

    Article  CAS  Google Scholar 

  16. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159–1165

    Article  CAS  Google Scholar 

  17. Liu J, Niu W, Liu G, Chen B, Huang J, Cheng H, Hu D, Wang J, Liu Q, Ge J, Yin P, Meng F, Zhang Q, Gu L, Lu Q, Zhang H (2021) J Am Chem Soc 143:4387–4396

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Liu Y, Wu M, Feng X, Redfern SAT, Shang Y, Yong X, Feng T, Wu K, Liu Z, Li B, Chen Z, Tse JS, Lu S, Yang B (2018) Adv Mater 30:e1800676

    Article  PubMed  CAS  Google Scholar 

  19. Liu Y, Li X, Zhang Q, Li W, Xie Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S (2020) Angew Chem Int Ed Engl 59:1718–1726

    Article  CAS  PubMed  Google Scholar 

  20. Sun T, Zang W, Yan H, Li J, Zhang Z, Bu Y, Chen W, Wang J, Lu J, Su C (2021) ACS Catal 11: 4498–4509

    Article  CAS  Google Scholar 

  21. Wang J, Kim J, Choi S, Wang H, Lim J (2020) Small Methods 4:2000621

    Article  CAS  Google Scholar 

  22. Xiao W, Zhang L, Bukhvalov D, Chen Z, Zou Z, Shang L, Yang X, Yan D, Han F, Zhang T (2020) Nano Energy 70:104445

    Article  CAS  Google Scholar 

  23. Hua W, Sun H-H, Xu F, Wang J-G (2020) Rare Met 39:335–351

    Article  CAS  Google Scholar 

  24. Xiao W, Yan D, Zhang Y, Yang X, Zhang T (2021) Energy Fuels 35:4609–4615

    Article  CAS  Google Scholar 

  25. Li A, Sun Y, Yao T, Han H (2018) Chem-A Eur J 24:18334–18355

    Article  CAS  Google Scholar 

  26. Qin Q, Chen L, Wei T, Wang Y, Liu X (2019) Catal Sci Technol 9:1595–1601

    Article  CAS  Google Scholar 

  27. Du Y, Wang Z, Li H, Han Y, Liu Y, Yang Y, Liu Y, Wang L (2019) Int J Hydrogen Energy 44:19978–19985

    Article  CAS  Google Scholar 

  28. Ren C, Chen Y, Du L, Wang Q, Li L, Tian G (2021) ChemElectroChem 8:1134–1140

    Article  CAS  Google Scholar 

  29. Zhang M, Li T, Wang J, Pan Y, Ma S-J, Zhu H, Du M-L (2018) Chin J Inorg Chem 34:942–950

    CAS  Google Scholar 

  30. Liu T, Asiri AM, Sun X (2016) Nanoscale 8:3911–3915

    Article  CAS  PubMed  Google Scholar 

  31. Ye M, Hu F, Yu D, Han S, Li L, Peng S (2021) Ceram Int 47: 18424-18432

    Article  CAS  Google Scholar 

  32. Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X (2016) Angew Chem Int Ed Engl 55:6702–6707

    Article  CAS  PubMed  Google Scholar 

  33. Xiong K, Li L, Zhang L, Ding W, Peng L, Wang Y, Chen S, Tan S, Wei Z (2015) J Mater Chem A 3:1863–1867

    Article  CAS  Google Scholar 

  34. Xing Z, Yang X, Asiri AM, Sun X (2016) ACS Appl Mater Interfaces 8:14521–14526

    Article  CAS  PubMed  Google Scholar 

  35. Sun X, Shao Q, Pi Y, Guo J, Huang X (2017) J Mater Chem A 5:7769–7775

    Article  CAS  Google Scholar 

  36. Zheng X, Peng L, Li L, Yang N, Yang Y, Li J, Wang J, Wei Z (2018) Chem Sci 9:1822–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Nat Mater 11:550–557

    Article  CAS  PubMed  Google Scholar 

  38. Zhang D, Chi D, Okajima T, Ohsaka T (2007) Electrochim Acta 52:5400–5406

    Article  CAS  Google Scholar 

  39. Wan W, Wei S, Li J, Triana CA, Patzke GR (2019). J Mater Chem A. https://doi.org/10.1039/C9TA03213D

    Article  Google Scholar 

  40. Ji Y, Xie J, Yang Y, Fu X, Sun R, Wong C (2020) Chin Chem Lett 31:855–858

    Article  CAS  Google Scholar 

  41. Song H, Wu M, Tang Z, Tse JS, Yang B, Lu S (2021) Angew Chem Int Ed 60:7234–7244

    Article  CAS  Google Scholar 

  42. Chen X, Zhen X, Gong H, Li L, Xiao J, Xu Z, Yan D, Xiao G, Yang R (2019) Chin Chem Lett 30:681–685

    Article  CAS  Google Scholar 

  43. Bao J, Xie J, Lei F, Wang Z, Liu W, Xu L, Guan M, Zhao Y, Li H (2018) Catalysts 8:350

    Article  CAS  Google Scholar 

  44. Xu H, Wei J, Zhang K, Zhang M, Liu C, Guo J, Du Y (2018) J Mater Chem A 6:22697–22704

    Article  CAS  Google Scholar 

  45. Li Y, Jia B, Chen B, Liu Q, Cai M, Xue Z, Fan Y, Wang H-P, Su C-Y, Li G (2018) Dalton Trans 47:14679–14685

    Article  CAS  PubMed  Google Scholar 

  46. Tang C, Gan L, Zhang R, Lu W, Jiang X, Asiri AM, Sun X, Wang J, Chen L (2016) Nano Lett 16:6617–6621

    Article  CAS  PubMed  Google Scholar 

  47. Hao J, Yang W, Zhang Z, Tang J (2015) Nanoscale 7:11055–11062

    Article  CAS  PubMed  Google Scholar 

  48. Li D, Baydoun H, Verani CN, Brock SL (2016) J Am Chem Soc 138:4006–4009

    Article  CAS  PubMed  Google Scholar 

  49. Cai P, Huang J, Chen J, Wen Z (2017) Angew Chem Int Ed 56:4858–4861. https://doi.org/10.1002/anie.201701280

    Article  CAS  Google Scholar 

  50. Xie M, Yang L, Ji Y, Wang Z, Ren X, Liu Z, Asiri AM, Xiong X, Sun X (2017). Nanoscale. https://doi.org/10.1039/C7NR07269D

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang S, Ge X, Xiao J, Huang L, Liu J, Wu J, Yue W, Yang X (2021) Catal Lett1 51:1720-1727. https://doi.org/10.1007/s10562-020-03428-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51203008)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding Cao or Xinhua Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Dong, Y., Tang, Y. et al. Amorphous Manganese–Cobalt Nanosheets as Efficient Catalysts for Hydrogen Evolution Reaction (HER). Catal Surv Asia 25, 437–444 (2021). https://doi.org/10.1007/s10563-021-09342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09342-8

Keywords

Navigation