Skip to main content

Advertisement

Log in

Amorphous CoMoSx/N-Doped Carbon Hybrid with 3D Networks as Electrocatalysts for Hydrogen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic materials without using precious metallic elements for electrocatalytic water splitting are a crucial demand to the renewable energy production. Cobalt molybdenum sulfide (CoMoSx) is one of the promising candidates for such purpose. Yet, the sparse catalytic active sites and poor electrical conductivity limit its catalytic performance. Here, we presented an efficient strategy to synthesize amorphous cobalt molybdenum supported on tree-dimensional network N-doped carbon nanofibers (CoMoSx/NCNFs) with the enlarged surface area. The obtained catalysts were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS) and energy-dispersive X-ray spectroscopy (EDS) methods, and the catalytic activity was evaluated by electrochemical technique. In contrast to large aggregate CoMoSx particles grown on carbon paper electrode without NCNFs, CoMoSx/NCNFs/CP hybrid materials possess porous structure with an abundance of exposed active sites stacked onto NCNF surface. Benefiting from the synergistic effect between the amorphous CoMoSx and the underlying NCNF network, CoMoSx/NCNFs hybrid exhibits an excellent activity for hydrogen evolution reaction (HER) with a low onset overpotential of 117 mV, a Tafel slope of 75 mV/decade, and good stability.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Turner JA (2004) Science 305:972–974

    PubMed  CAS  Google Scholar 

  2. Bartak DE, Kazee B, Shimazu K et al (1986) Anal Chem 58:2756–2761

    CAS  Google Scholar 

  3. Ge X, Chen L, Kang J et al (2013) Adv Funct Mater 23:4156–4162

    CAS  Google Scholar 

  4. Ge X, Chen L, Zhang L et al (2014) Adv Mater 26:3100–3104

    PubMed  CAS  Google Scholar 

  5. Du H, Kong RM, Guo X et al (2018) Nanoscale 10:21617–21624

    PubMed  CAS  Google Scholar 

  6. Kibsgaard J, Chen Z, Reinecke BN et al (2012) Nat Mater 11:963–969

    PubMed  CAS  Google Scholar 

  7. Berit H, Poul Georg M, Jacob B et al (2005) J Am Chem Soc 127:5308–5309

    Google Scholar 

  8. Jaramillo TF, Jacob B, Nielsen JH et al (2007) Science 317:100–102

    PubMed  CAS  Google Scholar 

  9. Chang K, Hai X, Pang H et al (2016) Adv Mater 28:10033–10041

    PubMed  CAS  Google Scholar 

  10. Lukowski MA, Daniel AS, Meng F et al (2013) J Am Chem Soc 135:10274–10277

    PubMed  CAS  Google Scholar 

  11. Zhang N, Ma W, Jia F et al (2016) Int J Hydrog Energy 41:3811–3819

    CAS  Google Scholar 

  12. Wang H, Tsai C, Kong D et al (2015) Nano Res 8:566–575

    CAS  Google Scholar 

  13. Lv X-J, She G-W, Zhou S-X et al (2013) Rsc Adv 3:21231–21236

    CAS  Google Scholar 

  14. Dominguez N, Torres B, Barrera LA et al (2018) ACS Omega 3:10243–10249

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Merki D, Vrubel H, Rovelli L et al (2012) Chem Sci 3:2515–2525

    CAS  Google Scholar 

  16. Pham K-C, Chang Y-H, McPhail DS et al (2016) ACS Appl Mater Inter 8:5961–5971

    CAS  Google Scholar 

  17. Li Y, Wang H, Xie L et al (2011) J Am Chem Soc 133:7296–7299

    PubMed  CAS  Google Scholar 

  18. Liao L, Zhu J, Bian X et al (2013) Adv Funct Mater 23:5326–5333

    CAS  Google Scholar 

  19. Wang J, Xu F, Jin H et al (2017) Adv Mater 29:1605838

    Google Scholar 

  20. Li DJ, Maiti UN, Lim J et al (2014) Nano Lett 14:1228–1233

    PubMed  CAS  Google Scholar 

  21. Ekspong J, Sharifi T, Shchukarev A et al (2016) Adv Funct Mater 26:6766–6776

    CAS  Google Scholar 

  22. Zhao Y, Nakamura R, Kamiya K et al (2013) Nat Commun 4:2390

    PubMed  Google Scholar 

  23. Tang YJ, Wang Y, Wang XL et al (2016) Adv Energy Mater 6:1600116

    Google Scholar 

  24. Yu P, Wang L, Xie Y et al (2018) Small 14:1801717

    Google Scholar 

  25. Wang Z-L, Hao X-F, Jiang Z et al (2015) J Am Chem Soc 137:15070–15073

    PubMed  CAS  Google Scholar 

  26. Maitra U, Gupta U, De M et al (2013) Angew Chem Int Ed 52:13057–13061

    CAS  Google Scholar 

  27. He Y, Du S, Li H et al (2016) J Solid State Electr 20:1459–1467

    CAS  Google Scholar 

  28. Haq AU, Lim J, Yun JM et al (2013) Small 9:3829–3833

    PubMed  CAS  Google Scholar 

  29. Wang J, Luo Q, Luo C et al (2017) J Solid State Electr 21:2071–2077

    CAS  Google Scholar 

  30. Dorjgotov A, Ok J, Jeon Y et al (2013) J Solid State Electr 17:2567–2577

    CAS  Google Scholar 

  31. Qiu Y, Yu J, Wu W et al (2012) J Solid State Electr 17:565–573

    Google Scholar 

  32. Gao S, Fan B, Feng R et al (2017) Nano Energy 40:462–470

    CAS  Google Scholar 

  33. Guruprasad K, Maiyalagan T, Shanmugam S (2019) ACS Appl Energy Mater 2:6184–6194

    CAS  Google Scholar 

  34. Dai X, Du K, Li Z et al (2015) ACS Appl Mater Interfaces 7:27242–27253

    PubMed  CAS  Google Scholar 

  35. Liu X, Jiang J, Ai L (2015) J Mater Chem A 3:9707–9713

    CAS  Google Scholar 

  36. Feng J-X, Ding L-X, Ye S-H et al (2015) Adv Mater 27:7051–7057

    PubMed  CAS  Google Scholar 

  37. Chen Y-W, Lin S-Y, Chiang C-Y (2017) Langmuir 33:4638–4646

    PubMed  CAS  Google Scholar 

  38. Ye Z, Yang J, Li B et al (2017) Small 13:1700111

    Google Scholar 

  39. Laurenti D, Phung-Ngoc B, Roukoss C et al (2013) J Catal 297:165–175

    CAS  Google Scholar 

  40. Lai F, Miao Y-E, Huang Y et al (2015) ACS Appl Mater Interfaces 8:3558–3566

    PubMed  Google Scholar 

  41. Weber T, Muijsers JC, Niemantsverdriet JW (1995) J Phys Chem 99:9194–9200

    CAS  Google Scholar 

  42. Pentland N, Bockris JM, Sheldon E (1957) J Electrochem Soc 104:182–194

    CAS  Google Scholar 

  43. Sheng W, Gasteiger HA, Shao-Horn Y (2010) J Electrochem Soc 157:B1529–B1536

    CAS  Google Scholar 

  44. Chen Y, Wang J, Liu H et al (2009) Electrochem Commun 11:2071–2076

    CAS  Google Scholar 

  45. Groves MN, Malardier-Jugroot C, Jugroot M (2012) J Phys Chem C 116:10548–10556

    CAS  Google Scholar 

  46. An W, Turner CH (2009) J Phys Chem C 113:7069–7078

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21403174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbo Ge.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for each contributing author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ge, X., Xiao, J. et al. Amorphous CoMoSx/N-Doped Carbon Hybrid with 3D Networks as Electrocatalysts for Hydrogen Evolution. Catal Lett 151, 1720–1727 (2021). https://doi.org/10.1007/s10562-020-03428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03428-0

Keywords

Navigation