Skip to main content
Log in

Poly(vinyl Alcohol)-Alginate Immobilized Trametes versicolor IBL-04 Laccase as Eco-friendly Biocatalyst for Dyes Degradation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Laccase-based biocatalysts are promising agents for the remediation of environmental pollutants. However, stability, reusability, and cost-effectiveness remain a challenge for biochemical engineering. Herein, Trametes versicolor IBL-04 laccase was immobilized on poly(vinyl alcohol) (PVA)-alginate beads. The maximum immobilization efficiency was observed using a 2.5 mm bead size with 12% (w/v) PVA and 2% (w/v) alginate concentration. The native enzyme displayed optimal activity at pH 5.0, and 45 °C, which was improved to pH 6 and 70 °C in PVA-alginate immobilized biocatalyst. PVA-alginate immobilized laccase presented comparatively high Vmax (from 720 to 962 U/mL) and low Km (from 70 to 12 µM) values from the native enzyme. Immobilized laccase was applied to catalyze the decolorization of various textile dye pollutants, including Rhodamine B, Reactive Black 5 (RB5), Drimaren Red and Drimaren Turquoise. Results revealed almost complete decolorization and decomposition of all dye’s solution by the laccase-assisted biocatalytic reaction. Prominent peaks of untreated dyes observed in the visible region disappeared following enzymatic treatment, and the appearance of any new peaks was not detected during the enzyme-mediated degradation process. In conclusion, immobilizing laccase on PVA-alginate matrix offers a facile and cost-efficient approach to remediate dyes and exhibit considerable potential for numerous biochemical engineering applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asgher M, Noreen S, Bilal M (2017) Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers. Int J Biol Macromol 95:54–62

    Article  CAS  PubMed  Google Scholar 

  2. Singh AK, Bilal M, Iqbal HM, Raj A (2021) Lignin peroxidase in focus for catalytic elimination of contaminants—A critical review on recent progress and perspectives. Int J Biol Macromol 179:58–82

    Article  CAS  Google Scholar 

  3. Noreen S, Asgher M, Hussain F, Iqbal A (2016) Performance improvement of Ca-alginate bead cross-linked laccase from Trametes versicolor IBL-04. BioResources 11(1):558–572

    CAS  Google Scholar 

  4. Olajuyigbe FM, Adetuyi OY, Fatokun CO (2019) Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. Int J Biol Macromol 125:856–864

    Article  CAS  PubMed  Google Scholar 

  5. Singh AK, Bilal M, Iqbal HM, Meyer AS, Raj A (2021) Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Sci Total Env 777:145988

    Article  CAS  Google Scholar 

  6. Guan ZB, Shui Y, Song CM, Zhang N, Cai YJ, Liao XR (2015) Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. Environ Sci Pollut Res 22(12):9515–9523

    Article  CAS  Google Scholar 

  7. Mojtabavi S, Khoshayand MR, Fazeli MR, Samadi N, Faramarzi MA (2020) Combination of thermal and biological treatments for bio-removal and detoxification of some recalcitrant synthetic dyes by betaine-induced thermostabilized laccase. Environ Technol Innov 20:10104

    Article  CAS  Google Scholar 

  8. Boruah P, Sarmah P, Das PK, Goswami T (2019) Exploring the lignolytic potential of a new laccase producing strain Kocuria sp PBS-1 and its application in bamboo pulp bleaching. Int Biodeter Biodegradation 143:104726

    Article  CAS  Google Scholar 

  9. Bagewadi ZK, Mulla SI, Ninnekar HZ (2017) Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. J Gene Eng Biotechnol 15(1):139–150

    Article  Google Scholar 

  10. Bilal M, Ashraf SS, Iqbal HM (2020) Laccase-mediated bioremediation of dye-based hazardous pollutants. In: Inamuddin MI, Ahamed EL, Asiri AM (eds) Methods for Bioremediation of Water and Wastewater Pollution. Springer, Cham, pp 137–160

    Chapter  Google Scholar 

  11. Bilal M, Rasheed T, Nabeel F, Iqbal HM, Zhao Y (2019) Hazardous contaminants in the environment and their laccase-assisted degradation–a review. J Environ Manage 234:253–264

    Article  CAS  PubMed  Google Scholar 

  12. Ji C, Nguyen LN, Hou J, Hai FI, Chen V (2017) Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep Purif Technol 178:215–223

    Article  CAS  Google Scholar 

  13. Stevens JC, Shi J (2019) Biocatalysis in ionic liquids for lignin valorization: Opportunities and recent developments. Biotechnol Adv 37(8):107418

    Article  CAS  PubMed  Google Scholar 

  14. Narnoliya LK, Agarwal N, Patel SN, Singh SP (2019) Kinetic characterization of laccase from Bacillus atrophaeus, and its potential in juice clarification in free and immobilized forms. J Microbiol 57(10):900–909

    Article  CAS  PubMed  Google Scholar 

  15. Wang F, Owusu-Fordjour M, Xu L, Ding Z, Gu Z (2020) Immobilization of laccase on magnetic chelator nanoparticles for apple juice clarification in magnetically stabilized fluidized bed. Front Bioeng Biotechnol 8:589

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mogharabi M, Faramarzi MA (2014) Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv Synth Catal 356(5):897–927

    Article  CAS  Google Scholar 

  17. Kudanga T, Nemadziva B, Le Roes-Hill M (2017) Laccase catalysis for the synthesis of bioactive compounds. Appl Microbiol Biotechnol 101(1):13–33

    Article  CAS  PubMed  Google Scholar 

  18. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468

    Article  CAS  PubMed  Google Scholar 

  19. Al-Maqdi KA, Bilal M, Alzamly A, Iqbal H, Shah I, Ashraf SS (2021) Enzyme-loaded flower-shaped nanomaterials: a versatile platform with biosensing, biocatalytic, and environmental promise. Nanomaterials 11(6):1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qamar SA, Qamar M, Bilal M, Bharagava RN, Ferreira LFR, Sher F, Iqbal HM (2021) Cellulose-deconstruction potential of nano-biocatalytic systems: A strategic drive from designing to sustainable applications of immobilized cellulases. Int J Biol Macromol 185:1–19

    Article  CAS  PubMed  Google Scholar 

  21. Morsi R, Al-Maqdi KA, Bilal M, Iqbal H, Khaleel A, Shah I, Ashraf SS (2021) Immobilized soybean peroxidase hybrid biocatalysts for efficient degradation of various emerging pollutants. Biomolecules 11(6):904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheldon RA (2016) Engineering a more sustainable world through catalysis and green chemistry. J R Soc Interface 13(116):20160087

    Article  PubMed  PubMed Central  Google Scholar 

  23. Almulaiky, Y. Q., & Al-Harbi, S. A. (2021). Preparation of a calcium alginate-coated polypyrrole/silver nanocomposite for site-specific immobilization of polygalacturonase with high reusability and enhanced stability. Catalysis Letters, 1–15.

  24. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307

    Article  CAS  Google Scholar 

  25. Gan, J., Bagheri, A. R., Aramesh, N., Gul, I., Franco, M., Almulaiky, Y. Q., & Bilal, M. (2020). Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis–A review. International Journal of Biological Macromolecules.

  26. Weiser D, Nagy F, Bánóczi G, Oláh M, Farkas A, Szilágyi A, Poppe L (2017) Immobilization engineering–How to design advanced sol–gel systems for biocatalysis? Green Chem 19(16):3927–3937

    Article  CAS  Google Scholar 

  27. Bilal M, Iqbal HM (2019) Naturally-derived biopolymers: Potential platforms for enzyme immobilization. Int J Biol Macromol 130:462–482

    Article  CAS  PubMed  Google Scholar 

  28. Bilal M, Qamar SA, Ashraf SS, Rodríguez-Couto S, Iqbal HM (2021) Robust nanocarriers to engineer nanobiocatalysts for bioprocessing applications. Adv Coll Interface Sci 293:102438

    Article  CAS  Google Scholar 

  29. Almulaiky YQ, Al-Harbi SA (2019) A novel peroxidase from Arabian balsam (Commiphora gileadensis) stems: Its purification, characterization and immobilization on a carboxymethylcellulose/Fe3O4 magnetic hybrid material. Int J Biol Macromol 133:767–774

    Article  CAS  PubMed  Google Scholar 

  30. Al-Harbi SA, Almulaiky YQ (2020) Purification and biochemical characterization of Arabian balsam α-amylase and enhancing the retention and reusability via encapsulation onto calcium alginate/Fe2O3 nanocomposite beads. Int J Biol Macromol 160:944–952

    Article  CAS  PubMed  Google Scholar 

  31. Piao M, Zou D, Yang Y, Ren X, Qin C, Piao Y (2019) Multi-functional laccase immobilized hydrogel microparticles for efficient removal of bisphenol A. Materials 12(5):704

    Article  CAS  PubMed Central  Google Scholar 

  32. Qamar SA, Asgher M, Bilal M (2020) Immobilization of alkaline protease from Bacillus brevis using Ca-alginate entrapment strategy for improved catalytic stability, silver recovery, and dehairing potentialities. Catal Lett 150:3572–3583

    Article  CAS  Google Scholar 

  33. Bilal M, Asgher M (2015) Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads. Chem Cent J 9(1):1–14

    Article  CAS  Google Scholar 

  34. Arca-Ramos A, Ammann EM, Gasser CA, Nastold P, Eibes G, Feijoo G, Corvini PX (2016) Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. Environ Sci Pollut Res 23(4):3217–3228

    Article  CAS  Google Scholar 

  35. Zhang Y, Ge J, Liu Z (2015) Enhanced activity of immobilized or chemically modified enzymes. ACS Catal 5(8):4503–4513

    Article  CAS  Google Scholar 

  36. Yinghui D, Qiuling W, Shiyu F (2002) Laccase stabilization by covalent binding immobilization on activated polyvinyl alcohol carrier. Lett Appl Microbiol 35(6):451–456

    Article  PubMed  Google Scholar 

  37. Zhou, W., Zhang, W., & Cai, Y. (2020). Laccase immobilization for water purification: A comprehensive review. Chemical Engineering Journal, 126272.

  38. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    Article  CAS  Google Scholar 

  39. Kay-Shoemake JL, Watwood ME (1996) Limitations of the lignin peroxidase system of the white-rot fungus. Phanerochaete chrysosporium Appl Microbiol Biotechnol 46(4):438–442

    Article  CAS  Google Scholar 

  40. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  41. Wolfenden BS, Willson RL (1982) Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin Trans 2(7):805–812

    Article  Google Scholar 

  42. Zhan JF, Jiang ST, Pan LJ (2013) Immobilization of phospholipase A1 using a polyvinyl alcohol-alginate matrix and evaluation of the effects of immobilization. Braz J Chem Eng 30(4):721–728

    Article  CAS  Google Scholar 

  43. Idris A, Zain NAM, Suhaimi MS (2008) Immobilization of Baker’s yeast invertase in PVA–alginate matrix using innovative immobilization technique. Process Biochem 43(4):331–338

    Article  CAS  Google Scholar 

  44. Nunes MA, Vila-Real H, Fernandes PC, Ribeiro MH (2010) Immobilization of naringinase in PVA–alginate matrix using an innovative technique. Appl Biochem Biotechnol 160(7):2129–2147

    Article  CAS  PubMed  Google Scholar 

  45. Takei T, Ikeda K, Ijima H, Kawakami K (2011) Fabrication of poly (vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochem 46(2):566–571

    Article  CAS  Google Scholar 

  46. Qin X, Wang J, Zheng G (2010) Enantioselective resolution of γ-lactam by a whole cell of microbacterium hydrocarbonoxydans (L29–9) immobilized in polymer of PVA–alginate–boric acid. Appl Biochem Biotechnol 162(8):2345–2354

    Article  CAS  PubMed  Google Scholar 

  47. Embaby, Ahmed S., ""An Investigation into the Potential Of Immobilized Nitrifies In Wastewater Treatment"" (2005). Theses. 448. https://scholarworks.uaeu.ac.ae/all_theses/448.

  48. Grosová Z, Rosenberg M, Gdovin M, Sláviková L, Rebroš M (2009) Production of D-galactose using β-galactosidase and Saccharomyces cerevisiae entrapped in poly (vinylalcohol) hydrogel. Food Chem 116(1):96–100

    Article  CAS  Google Scholar 

  49. Stanescu MD, Fogorasi M, Shaskolskiy BL, Gavrilas S, Lozinsky VI (2010) New potential biocatalysts by laccase immobilization in PVA cryogel type carrier. Appl Biochem Biotechnol 160(7):1947–1954

    Article  CAS  PubMed  Google Scholar 

  50. Freitas FF, Marquez LDS, Ribeiro GP, Brandão GC, Cardoso VL, Ribeiro EJ (2012) Optimization of the immobilization process of β-galatosidade by combined entrapment-cross-linking and the kinetics of lactose hydrolysis. Braz J Chem Eng 29(1):15–24

    Article  CAS  Google Scholar 

  51. Vujčić Z, Miloradović Z, Milovanović A, Božić N (2011) Cell wall invertase immobilisation within gelatin gel. Food Chem 126(1):236–240

    Article  CAS  Google Scholar 

  52. Upadhyay LSB, Verma N (2014) Highly efficient production of inverted syrup in an analytical column with immobilized invertase. J Food Sci Technol 51(12):4120–4125

    Article  CAS  PubMed  Google Scholar 

  53. El-Tanash AB, Sherief AA, Nour A (2011) Catalytic properties of immobilized tannase produced from Aspergillus aculeatus compared with the free enzyme. Braz J Chem Eng 28(3):381–391

    Article  CAS  Google Scholar 

  54. Alaoui MS, Ghanam J, Merzouki M, Penninckx MJ, Benlemlih M (2013) Immobilisation of Pycnoporus coccineus laccase in ca alginate beads for use in the degradation of aromatic compounds present in olive oil mill wastewaters. J Biotechnol Lett 4(2):91

    Google Scholar 

  55. Kharkrang, K., & Ambasht, P. K. (2013). Immobilization of?-amylase from pennisetum typhoides inside gelatin beads and its characterization. Journal of Proteins & Proteomics, 4(3).

  56. Nicolucci C, Rossi S, Menale C, Godjevargova T, Ivanov Y, Bianco M, Diano N (2011) Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads. Biodegradation 22(3):673–683

    Article  CAS  PubMed  Google Scholar 

  57. Srivastava PK, Anand A (2014) Immobilization of acid phosphatase from Vigna aconitifolia seeds on chitosan beads and its characterization. Int J Biol Macromol 64:150–154

    Article  CAS  PubMed  Google Scholar 

  58. De Queiroz AA, Passos ED, De Brito Alves S, Silva GS, Higa OZ, Vítolo M (2006) Alginate–poly (vinyl alcohol) core–shell microspheres for lipase immobilization. J Appl Polym Sci 102(2):1553–1560

    Article  CAS  Google Scholar 

  59. Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B Enzym 101:56–66

    Article  CAS  Google Scholar 

  60. Tanriseven A, Doğan Ş (2001) Immobilization of invertase within calcium alginate gel capsules. Process Biochem 36(11):1081–1083

    Article  CAS  Google Scholar 

  61. Emregul E, Sungur S, Akbulut U (2006) Polyacrylamide–gelatine carrier system used for invertase immobilization. Food Chem 97(4):591–597

    Article  CAS  Google Scholar 

  62. Zheng F, Cui BK, Wu XJ, Meng G, Liu HX, Si J (2016) Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. Int Biodeterior Biodegradation 110:69–78

    Article  CAS  Google Scholar 

  63. Ma HF, Meng G, Cui BK, Si J, Dai YC (2018) Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes: Laccase immobilization and characterization. Chem Eng Res Des 132:664–676

    Article  CAS  Google Scholar 

  64. Peng J, Wu E, Lou X, Deng Q, Hou X, Lv C, Hu Q (2021) Anthraquinone removal by a metal-organic framework/polyvinyl alcohol cryogel-immobilized laccase: Effect and mechanism exploration. Chem Eng J 418:129473

    Article  CAS  Google Scholar 

  65. Mogharabi, M., Nassiri-Koopaei, N., Bozorgi-Koushalshahi, M., Nafissi-Varcheh, N., Bagherzadeh, G., & Faramarzi, M. A. (2012). Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes. Bioinorganic Chemistry and Applications, 2012.

  66. Uygun M (2013) Preparation of laccase immobilized cryogels and usage for decolorization. J Chem 2013:1–7

    Article  CAS  Google Scholar 

  67. Kunamneni A, Ghazi I, Camarero S, Ballesteros A, Plou FJ, Alcalde M (2008) Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochem 43(2):169–178

    Article  CAS  Google Scholar 

  68. Tallur PN, Megadi VB, Ninnekar HZ (2009) Biodegradation of p-cresol by immobilized cells of Bacillus sp. strain PHN 1. Biodegradation 20(1):79–83

    Article  CAS  PubMed  Google Scholar 

  69. Asgher M, Kamal S, Iqbal HMN (2012) Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic sol gel entrapment. Chem Cent J 6(1):1–10

    Article  CAS  Google Scholar 

  70. Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, Gübitz GM (2001) Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J Biotechnol 89(2–3):131–139

    Article  CAS  PubMed  Google Scholar 

  71. Soares GM, de Amorim MP, Costa-Ferreira M (2001) Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R. J Biotechnol 89(2–3):123–129

    Article  CAS  PubMed  Google Scholar 

  72. Claus H, Faber G, König HJAM (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59(6):672–678

    Article  CAS  PubMed  Google Scholar 

  73. Daassi D, Rodríguez-Couto S, Nasri M, Mechichi T (2014) Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int Biodeterior Biodegradation 90:71–78

    Article  CAS  Google Scholar 

  74. Bilal M, Asgher M, Shahid M, Bhatti HN (2016) Characteristic features and dye degrading capability of agar-agar gel immobilized manganese peroxidase. Int J Biol Macromol 86:728–740

    Article  CAS  PubMed  Google Scholar 

  75. Bilal M, Jing Z, Zhao Y, Iqbal HM (2019) Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal Agri Biotechnol 19:101174

    Article  Google Scholar 

  76. Asgher M, Wahab A, Bilal M, Iqbal HM (2018) Delignification of lignocellulose biomasses by alginate–chitosan immobilized laccase produced from Trametes versicolor IBL-04. Waste and Biomass Valorization 9(11):2071–2079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Higher Education Commission (HEC), Islamabad, Pakistan is gratefully acknowledged. Consejo Nacional de Ciencia y Tecnología (CONACYT) is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU: 735,340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noreen, S., Asgher, M., Qamar, S.A. et al. Poly(vinyl Alcohol)-Alginate Immobilized Trametes versicolor IBL-04 Laccase as Eco-friendly Biocatalyst for Dyes Degradation. Catal Lett 152, 1869–1879 (2022). https://doi.org/10.1007/s10562-021-03778-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03778-3

Keywords

Navigation