Skip to main content

Advertisement

Log in

Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The biodegradation of waters polluted by some bisphenols, endowed with endocrine activity, has been studied by means of laccase or tyrosinase immobilized on polyacrylonitrile (PAN) beads. Bisphenol A (BPA), Bisphenol B (BPB), Bisphenol F (BPF) and Tetrachlorobisphenol A (TCBPA) have been used. The laccase-PAN beads system has been characterized as a function of pH, temperature and substrate concentration. The biochemical parameters so obtained have been compared with those of the free enzyme to evidence the modification induced by the immobilization process. Once characterized, the laccase-PAN beads have been employed in a fluidized bed reactor to determine for each of the four bisphenols the degradation rate constant (k); the τ50, i.e., the time to obtain the 50% of degradation, and the removal efficiency (RE90) after 90 min of enzyme treatment. The same parameters have been measured for each of the four pollutants with the same fluidized bed bioreactor loaded with tyrosinase-PAN beads. The internal comparison, i.e., in each of the two catalytic systems, has shown that both enzymes exhibit a removal efficiency in the following order BPF>BPA>BPB>TCBPA. The external comparison, i.e., the comparison between the two catalytic system, has shown that the catalytic power of laccase were higher than that of tyrosinase. The operational stability of both catalytic systems resulted excellent, since they maintained more than 80% of the initial activity after 30 days of work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashby J, Tinwell H (1998) Uterotrophic activity of bisphenol A in the immature rat. Environ Health Persp 106:716–720

    Article  Google Scholar 

  • Ashby J, Odum J, Paton D, Lefevre PA, Beresford N, Sumpter JP (2000) Re-evaluation of the first synthetic estrogen, 1-keto-1,2,3,4-tetrahydrophenanthrene, and bisphenol A, using both the ovariectomised rat model used in 1933 and additional assays. Toxicol Lett 115:231–238

    Article  PubMed  CAS  Google Scholar 

  • Attanasio A, Diano N, Grano V, Sicuranza S, Rossi S, Bencivenga U, Fraconte L, Di Martino S, Canciglia P, Mita DG (2005) Nonisothermal bioreactors in the treatment of vegetation waters from olive oil: laccase versus syringic acid as bioremediation model. Biotechnol Progr 21:806–815

    Article  CAS  Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876–1881

    Article  CAS  Google Scholar 

  • Buchanan ID, Nicell JA (1997) Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol Bioeng 54:251–261

    Article  PubMed  CAS  Google Scholar 

  • Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, Jones JP (2007) Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere 67:770–778

    Article  PubMed  CAS  Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2009) Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine-disrupting chemicals. Biotechnol Bioeng 102:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • D’Annibale A, Rita Stazi S, Vinciguerra V, Di Mattia E, Giovannozzi Sermanni G (1999) Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochem 34:697–706

    Article  Google Scholar 

  • Dec J, Bollag JM (1994) Dehalogenation of chlorinated phenols during oxidative coupling. Environ Sci Technol 28:484–490

    Article  CAS  Google Scholar 

  • Dec J, Bollag JM (2000) Phenoloxidase-mediated interactions of phenols and anilines with humic materials. J Environ Qual 29:665–667

    Article  CAS  Google Scholar 

  • Diano N, Grano V, Fraconte L, Caputo P, Ricupito A, Attanasio A, Bianco M, Bencivenga U, Rossi S, Manco I, Mita L, Del Pozzo G, Mita DG (2007) Nonisothermal bioreactors in enzymatic remediation of waters polluted by endocrine disruptors: the BPA as model of pollutant. Appl Catal B Environ 69:252–261

    Article  CAS  Google Scholar 

  • Dodor D, Hwang H, Sin E (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor. Enzyme Microb Technol 35:210–217

    Article  CAS  Google Scholar 

  • Durante D, Casadio R, Martelli L, Tasco G, Portaccio M, De Luca P, Bencivenga U, Rossi S, Di Martino S, Grano V, Diano N, Mita DG (2004) Isothermal and non-isothermal bioreactors in the detoxification of waste waters polluted by aromatic compounds by means of immobilised laccase from Rhus veinicifera. J Mol Catal B Enzym 27:191–206

    Article  CAS  Google Scholar 

  • Elsby R, Maggs JL, Ashby J, Park BK (2001) Comparison of the modulatory effects of human and rat liver microsomal metabolism on the estrogenicity of bisphenol A: implications for extrapolation to humans. J Pharmacol Exp Ther 297:103–113

    PubMed  CAS  Google Scholar 

  • Filazzola M, Sannino F, Rao M, Gianfreda L (1999) Effect of various pollutants and soil-like constituents on laccase from Cerrena unicolor. J Environ Qual 28:1929–1938

    Article  CAS  Google Scholar 

  • Fukazawa H, Hoshino K, Shiozawa T, Matsushita H, Terao Y (2001) Identification and quantification of chlorinated bisphenol A in wastewater from wastepaper recycling plants. Chemosphere 44:973–979

    Article  PubMed  CAS  Google Scholar 

  • Fukazawa H, Watanabw M, Shiraishi F, Shiraishi H, Shiozawa T, Matsushita H, Terao Y (2002) Formation of chlorinated derivatives of bisphenol A in waste paper recycling plants and their estrogenic activities. J Health Sci 48:242–249

    Article  CAS  Google Scholar 

  • Fukuda T, Uchida H, Takashima Y, Uwajima T, Kawabata T, Suzuki M (2001) Degradation of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 284:704–706

    Article  PubMed  CAS  Google Scholar 

  • Gaido KW, Leonard LS, Lovell S, Gould JC, Babai D, Portier CJ, McDonnell DP (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharm 143:205–212

    Article  CAS  Google Scholar 

  • Galliker P, Hommes G, Schlosser D, Corvini PFX, Shahgaldian P (2010) Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds. J Colloid Int Sci 349:98–105

    Article  CAS  Google Scholar 

  • Georgieva S, Godjevargova T, Portaccio M, Lepore M, Mita DG (2008) Advantages in using non-isotermal bioreactors in bioremediation of water polluted by phenol by means of immobilized laccase from Rhus vernicifera. J Molecular Catal B Enzym 55:177–184

    Article  CAS  Google Scholar 

  • Helleday T, Tuominen KL, Bergman A, Jenssen D (1999) Brominated flame retardants induce intragenic recombination in mammalian cells. Mutat Res 439:137–147

    PubMed  CAS  Google Scholar 

  • Ikehata K, Nicell JA (2000) Characterization of tyrosinase for the treatment of aqueous phenols. Biores Technol 74:191–199

    Article  CAS  Google Scholar 

  • Ispas CR, Ravalli MT, Steere A, Andreescu S (2010) Multifunctional biomagnetic capsules for easy removal of phenol and bisphenol A. Water Res 44:1961–1969

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Nicell JA (2006a) Laccase-catalyzed oxidation of bisphenol A with the aid of additives. Process Biochem 41:1029–1037

    Article  CAS  Google Scholar 

  • Kim YJ, Nicell JA (2006b) Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A. Biores Technol 97:1431–1442

    Article  CAS  Google Scholar 

  • Kim HS, Han SY, Yoo SD, Lee BM, Park KL (2001) Potential estrogenic effects of bisphenol-A estimated by in vitro and in vivo combination assays. J Toxicol Sci 26:111–118

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Ohmegi M, Sanoh S, Sugihara K, Yoshihara S, Fujimoto N, Ohta S (2003) Estrogenic activity of styrene oligomers after metabolic activation by rat liver microsomes. Environ Health Persp 111:329–334

    Article  CAS  Google Scholar 

  • Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H, Ohta S (2005) Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol Sci 84:249–259

    Article  PubMed  CAS  Google Scholar 

  • Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132:2279–2286

    Article  PubMed  CAS  Google Scholar 

  • Kuruto-Niwa R, Terao Y, Nozawa R (2002) Identification of estrogenic activity of chlorinated bisphenol A using a GFP expression system. Environ Toxicol Pharm 12:27–35

    Article  CAS  Google Scholar 

  • Lante A, Crapisi A, Krastanov A, Spettoli P (2000) Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochem 36:51–58

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Marin-Zamora ME, Rojas-Melgarejo F, Garcia-Canovas F, Garcia-Ruiz PA (2007) Effects of the immobilization supports on the catalytic properties of immobilized mushroom tyrosinase: a comparative study using several substrates. J Biotechnology 131:388–396

    Article  CAS  Google Scholar 

  • Matthews JB, Twomey K, Zacharewski TR (2001) In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Chem Res Toxicol 14:149–157

    Article  PubMed  CAS  Google Scholar 

  • Mita L, Sica V, Guida M, Nicolucci T, Grrimaldi T, Caputo L, Bianco M, Rossi S, Bencivenga U, Mohy Eldin MS, Tufano MA, Mita DG, Diano N (2010) Employment of immobilised lipase from Candida rugosa for the bioremediation of waters polluted by dimethylphthalate, as a model of endocrine disruptors. J Mol Catal B Enzym 62:133–141

    Article  CAS  Google Scholar 

  • Moeder M, Martin C, Koeller G (2004) Degradation of hydroxylated compounds using laccase and horseradish peroxidase immobilized on microporous polypropylene hollow fiber membranes. J Membrane Sci 245:183–190

    Article  CAS  Google Scholar 

  • Nakagawa Y, Suzuki T (2001) Metabolism of bisphenol A in isolated rat hepatocytes and oestrogenic activity of a hydroxylated metabolite in MCF-7 human breast cancer cells. Xenobiotica 31:113–123

    Article  PubMed  CAS  Google Scholar 

  • Olsen CM, Meussen-Elholm ET, Samuelsen M, Holme JA, Hongslo JK (2003) Effects of the environmental oestrogens bisphenol A, tetrachlorobisphenol A, tetrabromobisphenol A, 4-hydroxybiphenyl and 4, 4’-dihydroxybiphenyl on oestrogen receptor binding, cell proliferation and regulation of oestrogen sensitive proteins in the human breast cancer cell line MCF-7. Pharmacol Toxicol 92:180–188

    Article  PubMed  CAS  Google Scholar 

  • Pottenger LH, Domoradzki JY, Markham DA, Hansen SC, Cagen SZ, Waechter JM Jr (2000) The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol Sci 54:3–18

    Article  PubMed  CAS  Google Scholar 

  • Qiu L, Huang Z (2010) The treatment of chlorophenols with laccase immobilized on sol-gel-derived silica. World J Microbiol Biotechnol 26:775–781

    Article  CAS  Google Scholar 

  • Rasera K, Ferla J, Dillon AJP, Riveiros R, Zeni M (2009) Immobilization of laccase from Pleurotus sajor-caju in polyamide membranes. Desalination 245:657–661

    Article  CAS  Google Scholar 

  • Saito T, Kato K, Yokogawa Y, Nishida M, Yamashita N (2004) Detoxification of bisphenol A and nonylphenol by purified extracellular laccase from a fungus isolated from soil. J Biosci Bioeng 98:64–66

    PubMed  CAS  Google Scholar 

  • Sjodin A, Carlsson H, Thuresson K, Sjolin S, Bergman A, Ostman C (2001) Flame retardants in indoor air at an electronics recycling plant and at other work environments. Environ Sci Technol 35:448–454

    Article  PubMed  CAS  Google Scholar 

  • Snyder RW, Maness SC, Gaido KW, Welsch F, Sumner SC, Fennell TR (2000) Metabolism and disposition of bisphenol A in female rats. Toxicol Appl Pharmacol 168:225–234

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Shen OX, Wang XR, Zhou L, Zhen SQ, Chen XD (2009) Anti-thyroid hormone activity of bisphenol A, tetrabromobisphenol A and tetrachlorobisphenol A in an improved reporter gene assay. Toxicol In Vitro 23(5):950–954

    Article  PubMed  CAS  Google Scholar 

  • Synder SA, Westerhoff P, Yoon Y, Sedlak DL (2003) Metabolism and disposition of bisphenol A in female rats. Toxicol Appl Pharmacol 168:225–234

    Article  Google Scholar 

  • Tamura A, Satoh E, Kashiwada A, Matsuda K, Yamada K (2010) Removal of alkylphenols by the combined use of tyrosinase immobilized on ion-exchange resins and chitosan beads. J Appl Polym Sci 115(1):137–145

    Article  CAS  Google Scholar 

  • Thomsen C, Janak K, Lundanes E, Becher G (2001) Determination of phenolic flame-retardants in human plasma using solid-phase extraction and gas chromatography-electron-capture mass spectrometry. J Chromatogr B Biomed Sci Appl 750:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tinwell H, Joiner R, Pate I, Soames A, Foster J, Ashby J (2000) Uterotrophic activity of bisphenol A in the immature mouse. Regul Toxicol Pharmacol 32:118–126

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi Y, Haneda T, Nishida T (2001) Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42:271–276

    Article  PubMed  CAS  Google Scholar 

  • Uchida H, Fukuda T, Miyamoto H, Kawabata T, Suzuki M, Uwajima T (2001) Polymerization of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 287:355–358

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Liu X, Xu Z, Chen H, Yang Y (2008) Degradation of chlorophenols catalyzed by laccase. Int Biodeter Biodegr 61:351–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out under the cooperation agreement between the University “Prof. Dr. Assen Zlatarov” of Burgas (Bulgaria) and the Italian Interuniversity Consortium “National Institute for Biostructures and Biosystems” (INBB). This work was also supported by scientific research sector of University “Prof. Dr Assen Zlatarov” of Burgas, by the Italian Ministry of Health/ISPESL under the National Strategic Project “Salute della donna”, by the Italian Ministry of Health/ISZM (Portici-Italy) and by the MIUR through a PRIN project (Funds 2008—Diano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Diano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolucci, C., Rossi, S., Menale, C. et al. Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads. Biodegradation 22, 673–683 (2011). https://doi.org/10.1007/s10532-010-9440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9440-2

Keywords

Navigation