Skip to main content
Log in

Assessment and comparison of putative amine receptor complement/diversity in the brain and eyestalk ganglia of the lobster, Homarus americanus

  • Original Article
  • Published:
Invertebrate Neuroscience

Abstract

In decapods, dopamine, octopamine, serotonin, and histamine function as locally released/hormonally delivered modulators of physiology/behavior. Although the functional roles played by amines in decapods have been examined extensively, little is known about the identity/diversity of their amine receptors. Recently, a Homarus americanus mixed nervous system transcriptome was used to identify putative neuronal amine receptors in this species. While many receptors were identified, some were fragmentary, and no evidence of splice/other variants was found. Here, the previously predicted proteins were used to search brain- and eyestalk ganglia-specific transcriptomes to assess/compare amine receptor complements in these portions of the lobster nervous system. All previously identified receptors were reidentified from the brain and/or eyestalk ganglia transcriptomes, i.e., dopamine alpha-1, beta-1, and alpha-2 (Homam-DAα2R) receptors, octopamine alpha (Homam-OctαR), beta-1, beta-2, beta-3, beta-4, and octopamine–tyramine (Homam-OTR-I) receptors, serotonin type-1A, type-1B (Homam-5HTR1B), type-2B, and type-7 receptors; and histamine type-1 (Homam-HA1R), type-2, type-3, and type-4 receptors. For many previously partial proteins, full-length receptors were deduced from brain and/or eyestalk ganglia transcripts, i.e., Homam-DAα2R, Homam-OctαR, Homam-OTR-I, and Homam-5HTR1B. In addition, novel dopamine/ecdysteroid, octopamine alpha-2, and OTR receptors were discovered, the latter, Homam-OTR-II, being a putative paralog of Homam-OTR-I. Finally, evidence for splice/other variants was found for many receptors, including evidence for some being assembly-specific, e.g., a brain-specific Homam-OTR-I variant and an eyestalk ganglia-specific Homam-HA1R variant. To increase confidence in the transcriptome-derived sequences, a subset of receptors was cloned using RT-PCR. These data complement/augment those reported previously, providing a more complete picture of amine receptor complement/diversity in the lobster nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Sidén-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT WKC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao C, Yang Y, Huang H, Ye H (2015) Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis. Sci Rep 5:17055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss DE (1951) Metabolic effects of sinus gland or eyestalk removal in the land crab Gecarcinus lateralis. Anat Rec 111:502–503

    Google Scholar 

  • Blitz DM, Nusbaum MP (2011) Neural circuit flexibility in a small sensorimotor system. Curr Opin Neurobiol 21:544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie AE, Yu A (2019) Identification of peptide hormones and their cognate receptors in Jasus edwardsii—a potential resource for the development of new aquaculture management strategies for rock/spiny lobsters. Aquaculture 503:636–662

    Article  CAS  Google Scholar 

  • Christie AE, Stemmler EA, Dickinson PS (2010) Crustacean neuropeptides. Cell Mol Life Sci 67:4135–4169

    Article  CAS  PubMed  Google Scholar 

  • Christie AE, Roncalli V, Wu LS, Ganote CL, Doak T, Lenz PH (2013) Peptidergic signaling in Calanus finmarchicus (Crustacea, Copepoda): in silico identification of putative peptide hormones and their receptors using a de novo assembled transcriptome. Gen Comp Endocrinol 187:117–135

    Article  CAS  PubMed  Google Scholar 

  • Christie AE, Chi M, Lameyer TJ, Pascual MG, Shea DN, Stanhope ME, Schulz DJ, Dickinson PS (2015) Neuropeptidergic signaling in the American lobster Homarus americanus: New insights from high-throughput nucleotide sequencing. PLoS ONE 10:e0145964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christie AE, Roncalli V, Cieslak MC, Pascual MG, Yu A, Lameyer TJ, Stanhope ME, Dickinson PS (2017) Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome. Gen Comp Endocrinol 243:96–119

    Article  CAS  PubMed  Google Scholar 

  • Christie AE, Yu A, Pascual MG, Roncalli V, Cieslak MC, Warner AN, Lameyer TJ, Stanhope ME, Dickinson PS, Hull JJ (2018a) Circadian signaling in Homarus americanus: region-specific de novo assembled transcriptomes show that both the brain and eyestalk ganglia possess the molecular components of a putative clock system. Mar Genom 40:25–44

    Article  Google Scholar 

  • Christie AE, Yu A, Roncalli V, Pascual MG, Cieslak MC, Warner AN, Lameyer TJ, Stanhope ME, Dickinson PS, Hull JJ (2018b) Molecular evidence for an intrinsic circadian pacemaker in the cardiac ganglion of the American lobster, Homarus americanus - Is diel cycling of heartbeat frequency controlled by a peripheral clock system? Mar Genom 41:19–30

    Article  Google Scholar 

  • Christie AE, Stanhope ME, Gandler HI, Lameyer TJ, Pascual MG, Shea DN, Yu A, Dickinson PS, Hull JJ (2018c) Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lob Homarus americanus. Invert Neurosci 18:12

    Article  PubMed  CAS  Google Scholar 

  • Cooke IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136

    Article  PubMed  Google Scholar 

  • Dickinson PS, Qu X, Stanhope ME (2016) Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches. Curr Opin Neurobiol 41:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson PS, Hull JJ, Miller A, Oleisky ER, Christie AE (2019) To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network? Comp Biochem Physiol Part D Genomics Proteomics 30:262–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  CAS  PubMed  Google Scholar 

  • Fernlund P, Josefsson L (1968) Chromactivating hormones of Pandalus borealis. Isolation and purification of the red-pigment-concentrating hormone. Biochim Biophys Acta 158:262–273

    Article  CAS  PubMed  Google Scholar 

  • Fernlund P, Josefsson L (1972) Crustacean color-change hormone: Amino acid sequence and chemical synthesis. Science 177:173–175

    Article  CAS  PubMed  Google Scholar 

  • Ferrè F, Clote P (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33:W230–W232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris-Warrick RM, Marder E, Selverston AI, Moulins M (1992) Dynamic biological networks: the stomatogastric nervous system. MIT press, Cambridge

    Google Scholar 

  • Honaas LA, Wafula EK, Wickett NJ, Der JP, Zhang Y, Edger PP, Altman NS, Pires JC, Leebens-Mack JH, dePamphilis CW (2016) Selecting superior de novo transcriptome assemblies: Lessons learned by leveraging the best plant genome. PLoS ONE 11:e0146062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hooper SL, DiCaprio RA (2004) Crustacean motor pattern generator networks. Neurosignals 13:50–69

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Christie AE, Kilman VL (1995) Functional organization of cotransmission systems: lessons from small nervous systems. Invert Neurosci 1:105–112

    Article  CAS  PubMed  Google Scholar 

  • McCoole MD, Baer KN, Christie AE (2011) Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behavior. J Exp Biol 214:1773–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCoole MD, Atkinson NJ, Graham DI, Grasser EB, Joselow AL, McCall NM, Welker AM, Wilsterman EJ Jr, Baer KN, Tilden AR, Christie AE (2012) Genomic analyses of aminergic signaling systems (dopamine, octopamine and serotonin) in Daphnia pulex. Comp Biochem Physiol Part D Genom Proteom 7:35–58

    CAS  Google Scholar 

  • Northcutt AJ, Lett KM, Garcia VB, Diester CM, Lane BJ, Marder E, Schulz DJ (2016) Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation. BMC Genom 17:868

    Article  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    Article  CAS  PubMed  Google Scholar 

  • Otsuka M, Iversen LL, Hall ZW, Kravitz EA (1966) Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proc Natl Acad Sci USA 56:1110–1115

    Article  CAS  PubMed  Google Scholar 

  • Otsuka M, Kravitz EA, Potter DD (1967) Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. J Neurophysiol 30:725–752

    Article  CAS  PubMed  Google Scholar 

  • Passano LM (1951) The X-organ-sinus gland system neurosecretory system of crabs. Anat Rec 111:502

    Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Selverston AI (2005) A neural infrastructure for rhythmic motor patterns. Cell Mol Neurobiol 25:223–244

    Article  PubMed  Google Scholar 

  • Selverston AI, Ayers J (2006) Oscillations and oscillatory behavior in small neural circuits. Biol Cybern 95:537–554

    Article  PubMed  Google Scholar 

  • Selverston AI, Moulins M (1987) The crustacean stomatogastric system. Springer, Berlin

    Book  Google Scholar 

  • Selverston A, Elson R, Rabinovich M, Huerta R, Abarbanel H (1998) Basic principles for generating motor output in the stomatogastric ganglion. Ann NY Acad Sci 860:35–50

    Article  CAS  PubMed  Google Scholar 

  • Skiebe P (2001) Neuropeptides are ubiquitous chemical mediators: Using the stomatogastric nervous system as a model system. J Exp Biol 204:2035–2048

    CAS  PubMed  Google Scholar 

  • Stein W (2009) Modulation of stomatogastric rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:989–1009

    Article  PubMed  Google Scholar 

  • Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, Matthews BB, Millburn G, Antonazzo G, Trovisco V, Kaufman TC, Calvi BR, FlyBase Consortium (2019) FlyBase 2.0: the next generation. Nucleic Acids Res 47:D759–D765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Lisa Baldwin and Dr. Colin Brent are thanked for reading and commenting on earlier versions of this article. This work was supported by funds from the National Science Foundation (IOS-1353023 [to AEC]; IOS-1856307 [to AEC]; IOS-1354567 [to PSD]; IOS-1856433 [to PSD]), the National Institutes of Health (INBRE Grant 8P20GM103423-12), the Cades Foundation (to AEC), and base CRIS funding from the US Department of Agriculture (Project No. 2020–22620-022-00D; to JJH). Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA; the USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Christie.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christie, A.E., Hull, J.J. & Dickinson, P.S. Assessment and comparison of putative amine receptor complement/diversity in the brain and eyestalk ganglia of the lobster, Homarus americanus. Invert Neurosci 20, 7 (2020). https://doi.org/10.1007/s10158-020-0239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-020-0239-5

Keywords

Navigation