Skip to main content
Log in

Crustacean neuropeptides

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ–sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for understanding the general principles governing neural circuit functioning, including modulation by peptides. Here, we review the basic biology of crustacean neuropeptides, discuss methodologies currently driving their discovery, provide an overview of the known families, and summarize recent data on their control of physiology and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christie AE, Skiebe P, Marder E (1995) Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis. J Exp Biol 198:2431–2439

    CAS  PubMed  Google Scholar 

  2. Blitz DM, Nusbaum MP (1999) Distinct functions for cotransmitters mediating motor pattern selection. J Neurosci 19:6774–6783

    CAS  PubMed  Google Scholar 

  3. Hooper SL, DiCaprio RA (2004) Crustacean motor pattern generator networks. Neurosignals 13:50–69

    CAS  PubMed  Google Scholar 

  4. Mulloney B, Skinner FK, Namba H, Hall WM (1998) Intersegmental coordination of swimmeret movements: mathematical models and neural circuits. Ann NY Acad Sci 860:266–280

    CAS  PubMed  Google Scholar 

  5. Cooke IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136

    PubMed  Google Scholar 

  6. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    CAS  PubMed  Google Scholar 

  7. Cooke I, Sullivan R (1982) Hormones and neurosecretion. In: Bliss D, Atwood H, Sandeman D (eds) The biology of crustacea. Academic Press, New York, pp 205–290

    Google Scholar 

  8. Christie AE, Cain SD, Edwards JM, Clason TA, Cherny E, Lin MH, Manhas AS, Sellereit KL, Cowan NG, Nold KA, Strassburg HP, Graubard K (2004) The anterior cardiac plexus: an intrinsic neurosecretory site within the stomatogastric nervous system of the crab Cancer productus. J Exp Biol 207:1163–1182

    PubMed  Google Scholar 

  9. Messinger DI, Kutz KK, Le T, Verley DR, Hsu YW, Ngo CT, Cain SD, Birmingham JT, Li L, Christie AE (2005) Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus. J Exp Biol 208:3303–3319

    CAS  PubMed  Google Scholar 

  10. Fernlund P, Josefsson L (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science 177:173–175

    CAS  PubMed  Google Scholar 

  11. Fernlund P, Josefsson L (1968) Chromactivating hormones of Pandalus Borealis. Isolation and purification of the ‘red-pigment-concentrating hormone’. Biochim Biophys Acta 158:262–273

    CAS  PubMed  Google Scholar 

  12. Fernlund P (1976) Structure of a light-adapting hormone from the shrimp, Pandalus borealis. Biochim Biophys Acta 439:17–25

    CAS  PubMed  Google Scholar 

  13. Trimmer BA, Kobierski LA, Kravitz EA (1987) Purification and characterization of FMRFamidelike immunoreactive substances from the lobster nervous system: isolation and sequence analysis of two closely related peptides. J Comp Neurol 266:16–26

    CAS  PubMed  Google Scholar 

  14. Tensen CP, Verhoeven AHM, Gaus G, Janssen KPC, Keller R, Vanherp F (1991) Isolation and amino acid sequence of crustacean hyperglycemic hormone precursor-related peptides. Peptides 12:673–681

    CAS  PubMed  Google Scholar 

  15. Christie AE, Lundquist CT, Nassel DR, Nusbaum MP (1997) Two novel tachykinin-related peptides from the nervous system of the crab Cancer borealis. J Exp Biol 200:2279–2294

    CAS  PubMed  Google Scholar 

  16. Duve H, Johnsen AH, Maestro JL, Scott AG, Jaros PP, Thorpe A (1997) Isolation and identification of multiple neuropeptides of the allatostatin superfamily in the shore crab Carcinus maenas. Eur J Biochem 250:727–734

    CAS  PubMed  Google Scholar 

  17. Dircksen H, Skiebe P, Abel B, Agricola H, Buchner K, Muren JE, Nassel DR (1999) Structure, distribution, and biological activity of novel members of the allatostatin family in the crayfish Orconectes limosus. Peptides 20:695–712

    CAS  PubMed  Google Scholar 

  18. Johnsen AH, Duve H, Davey M, Hall M, Thorpe A (2000) Sulfakinin neuropeptides in a crustacean. Isolation, identification and tissue localization in the tiger prawn Penaeus monodon. Eur J Biochem 267:1153–1160

    CAS  PubMed  Google Scholar 

  19. Sithigorngul P, Saraithongkum W, Longyant S, Panchan N, Sithigorngul W, Petsom A (2001) Three more novel FMRFamide-like neuropeptide sequences from the eyestalk of the giant freshwater prawn Macrobrachium rosenbergii. Peptides 22:191–197

    CAS  PubMed  Google Scholar 

  20. Torfs P, Baggerman G, Meeusen T, Nieto J, Nachman RJ, Calderon J, De Loof A, Schoofs L (2002) Isolation, identification, and synthesis of a disulfated sulfakinin from the central nervous system of an arthropod, the white shrimp Litopenaeus vannamei. Biochem Biophys Res Commun 299:312–320

    CAS  PubMed  Google Scholar 

  21. Christie AE, Cashman CR, Brennan HR, Ma MM, Sousa GL, Li L, Stemmler EA, Dickinson PS (2008) Identification of putative crustacean neuropeptides using in silico analyses of publicly accessible expressed sequence tags. Gen Comp Endocrinol 156:246–264

    CAS  PubMed  Google Scholar 

  22. Gard AL, Lenz PH, Shaw JR, Christie AE (2009) Identification of putative peptide paracrines/hormones in the water flea Daphnia pulex (Crustacea; Branchiopoda; Cladocera) using transcriptomics and immunohistochemistry. Gen Comp Endocrinol 160:271–287

    CAS  PubMed  Google Scholar 

  23. Ma MM, Bors EK, Dickinson ES, Kwiatkowski MA, Sousa GL, Henry RP, Smith CM, Towle DW, Christie AE, Li L (2009) Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics. Gen Comp Endocrinol 161:320–334

    CAS  PubMed  Google Scholar 

  24. Christie AE, Durkin CS, Hartline N, Ohno P, Lenz PH (2010) Bioinformatic analyses of the publicly accessible crustacean expressed sequence tags (ESTs) reveal numerous novel neuropeptide-encoding precursor proteins, including ones from members of several little studied taxa. Gen Comp Endocrinol 167:164–178

    CAS  PubMed  Google Scholar 

  25. Ma M, Gard AL, Xiang F, Wang J, Davoodian N, Lenz PH, Malecha SR, Christie AE, Li L (2010) Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 31:27–43

    CAS  PubMed  Google Scholar 

  26. Christie AE (2008) Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags. Gen Comp Endocrinol 157:174–185

    CAS  PubMed  Google Scholar 

  27. Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L (2008) Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci 31:427–445

    CAS  PubMed  Google Scholar 

  28. Hummon AB, Amare A, Sweedler JV (2006) Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom Rev 25:77–98

    CAS  PubMed  Google Scholar 

  29. Li L, Sweedler JV (2008) Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annu Rev Anal Chem 1:451–483

    CAS  Google Scholar 

  30. DeKeyser SS, Li L (2007) Mass spectrometric charting of neuropeptides in arthropod neurons. Anal Bioanal Chem 387:29–35

    CAS  PubMed  Google Scholar 

  31. Westman-Brinkmalm A, Brinkmalm G (2002) Mass spectrometry instrumentation. In: Silberring J, Ekman R (eds) Mass spectrometry and hyphenated techniques in neuropeptide research. Wiley, New York, pp 47–105

    Google Scholar 

  32. Chen C-H (2008) Review of a current role of mass spectrometry for proteome research. Anal Chim Acta 624:16–36

    CAS  PubMed  Google Scholar 

  33. Ahmed FE (2008) Utility of mass spectrometry for proteome analysis: Part I. Conceptual and experimental approaches. Exp Rev Proteom 5:841–864

    CAS  Google Scholar 

  34. Ahmed FE (2009) Utility of mass spectrometry for proteome analysis: Part II. Ion-activation methods, statistics, bioinformatics and annotation. Exp Rev Proteom 6:171–197

    CAS  Google Scholar 

  35. El-Aneed A, Cohen A, Banoub J (2009) Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev 44:210–230

    CAS  Google Scholar 

  36. Yasuda-Kamatani Y, Yasuda A (2000) Identification of orcokinin gene-related peptides in the brain of the crayfish Procambarus clarkii by the combination of MALDI-TOF and on-line capillary HPLC/Q-Tof mass spectrometries and molecular cloning. Gen Comp Endocrinol 118:161–172

    CAS  PubMed  Google Scholar 

  37. Skiebe P, Dreger M, Borner J, Meseke M, Weckwerth W (2003) Immunocytochemical and molecular data guide peptide identification by mass spectrometry: orcokinin and orcomyotropin-related peptides in the stomatogastric nervous system of several crustacean species. Cell Mol Biol 49:851–871

    CAS  PubMed  Google Scholar 

  38. Li L, Kelley WP, Billimoria CP, Christie AE, Pulver SR, Sweedler JV, Marder E (2003) Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J Neurochem 87:642–656

    CAS  PubMed  Google Scholar 

  39. Li L, Pulver SR, Kelley WP, Thirumalai V, Sweedler JV, Marder E (2002) Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. J Comp Neurol 444:227–244

    CAS  PubMed  Google Scholar 

  40. Skiebe P, Dreger M, Meseke M, Evers JF, Hucho F (2002) Identification of orcokinins in single neurons in the stomatogastric nervous system of the crayfish, Cherax destructor. J Comp Neurol 444:245–259

    CAS  PubMed  Google Scholar 

  41. DeKeyser SS, Kutz-Naber KK, Schmidt JJ, Barrett-Wilt GA, Li L (2007) Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J Proteome Res 6:1782–1791

    CAS  PubMed  Google Scholar 

  42. Kutz Kimberly K, Schmidt Joshua J, Li L (2004) In situ tissue analysis of neuropeptides by MALDI FTMS in-cell accumulation. Anal Chem 76:5630–5640

    CAS  PubMed  Google Scholar 

  43. Stemmler EA, Provencher HL, Guiney ME, Gardner NP, Dickinson PS (2005) Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for the identification of orcokinin neuropeptides in crustaceans using metastable decay and sustained off-resonance irradiation. Anal Chem 77:3594–3606

    CAS  PubMed  Google Scholar 

  44. Stemmler EA, Cashman CR, Messinger DI, Gardner NP, Dickinson PS, Christie AE (2007) High-mass-resolution direct-tissue MALDI-FTMS reveals broad conservation of three neuropeptides (APSGFLGMRamide, GYRKPPFNGSIFamide and pQDLDHVFLRFamide) across members of seven decapod crustaean infraorders. Peptides 28:2104–2115

    CAS  PubMed  Google Scholar 

  45. Ma MM, Kutz-Naber KK, Li L (2007) Methyl esterification assisted MALDI FTMS characterization of the orcokinin neuropeptide family. Anal Chem 79:673–681

    CAS  PubMed  Google Scholar 

  46. Cape SS, Rehm KJ, Ma M, Marder E, Li L (2008) Mass spectral comparison of the neuropeptide complement of the stomatogastric ganglion and brain in the adult and embryonic lobster, Homarus americanus. J Neurochem 105:690–702

    CAS  PubMed  Google Scholar 

  47. Chen RB, Hui LM, Sturm RM, Li L (2009) Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J Am Soc Mass Spectrom 20:1068–1077

    CAS  PubMed  Google Scholar 

  48. Huybrechts J, Nusbaum MP, Vanden Bosch L, Baggerman G, De Loof A, Schoofs L (2003) Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem Biophys Res Commun 308:535–544

    CAS  PubMed  Google Scholar 

  49. Fu Q, Goy Michael F, Li L (2005) Identification of neuropeptides from the decapod crustacean sinus glands using nanoscale liquid chromatography tandem mass spectrometry. Biochem Biophys Res Commun 337:765–778

    CAS  PubMed  Google Scholar 

  50. Fu Q, Kutz KK, Schmidt JJ, Hsu YW, Messinger DI, Cain SD, De la Iglesia HO, Christie AE, Li L (2005) Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. J Comp Neurol 493:607–626

    CAS  PubMed  Google Scholar 

  51. Ma MM, Chen RB, Sousa GL, Bors EK, Kwiatkowski MA, Goiney CC, Goy MF, Christie AE, Li L (2008) Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. Gen Comp Endocrinol 156:395–409

    CAS  PubMed  Google Scholar 

  52. Ma MM, Wang JH, Chen RB, Li L (2009) Expanding the crustacean neuropeptidome using a multifaceted mass spectrometric approach. J Proteome Res 8:2426–2437

    CAS  PubMed  Google Scholar 

  53. Schmidt JJ, McLlwain S, Page D, Christie AE, Li L (2008) Combining MALDI-FTMS and bioinformatics for rapid peptidomic comparisons. J Proteome Res 7:887–896

    CAS  PubMed  Google Scholar 

  54. Christie AE, Stemmler EA, Peguero B, Messinger DI, Provencher HL, Scheerlinck P, Hsu YW, Guiney ME, de la Iglesia HO, Dickinson PS (2006) Identification, physiological actions, and distribution of VYRKPPFNGSIFamide (Val(1)-SIFamide) in the stomatogastric nervous system of the American lobster Homarus americanus. J Comp Neurol 496:406–421

    CAS  PubMed  Google Scholar 

  55. Stemmler EA, Peguero B, Bruns EA, Dickinson PS, Christie AE (2007) Identification, physiological actions, and distribution of TPSGFLGMRamide: a novel tachykinin-related peptide from the midgut and stomatogastric nervous system of Cancer crabs. J Neurochem 101:1351–1366

    CAS  PubMed  Google Scholar 

  56. Saideman SR, Ma MM, Kutz-Naber KK, Cook A, Torfs P, Schoofs L, Li L, Nusbaum MP (2007) Modulation of rhythmic motor activity by pyrokinin peptides. J Neurophysiol 97:579–595

    CAS  PubMed  Google Scholar 

  57. Yasuda A, Yasuda-Kamatani Y, Nozaki M, Nakajima T (2004) Identification of GYRKPPFNGSIFamide (crustacean-SIFamide) in the crayfish Procambarus clarkii by topological mass spectrometry analysis. Gen Comp Endocrinol 135:391–400

    CAS  PubMed  Google Scholar 

  58. Yasuda-Kamatani Y, Yasuda A (2004) APSGFLGMRamide is a unique tachykinin-related peptide in crustaceans. Eur J Biochem 271:1546–1556

    CAS  PubMed  Google Scholar 

  59. Dickinson PS, Wiwatpanit T, Gabranski ER, Ackerman RJ, Stevens JS, Cashman CR, Stemmler EA, Christie AE (2009) Identification of SYWKQCAFNAVSCFamide: a broadly conserved crustacean C-type allatostatin-like peptide with both neuromodulatory and cardioactive properties. J Exp Biol 212:1140–1152

    CAS  PubMed  Google Scholar 

  60. Stemmler EA, Bruns EA, Cashman CR, Dickinson PS, Christie AE (2010) Molecular and mass spectral identification of the broadly conserved decapod crustacean neuropeptide pQIRYHQCYFNPISCF: the first PISCF-allatostatin (Manduca sexta- or C-type allatostatin) from a non-insect. Gen Comp Endocrinol 165:1–10

    CAS  PubMed  Google Scholar 

  61. Ma MM, Szabo TM, Jia CX, Marder E, Li L (2009) Mass spectrometric characterization and physiological actions of novel crustacean C-type allatostatins. Peptides 30:1660–1668

    CAS  PubMed  Google Scholar 

  62. Dickinson PS, Stemmler EA, Barton EE, Cashman CR, Gardner NP, Rus S, Brennan HR, McClintock TS, Christie AE (2009) Molecular, mass spectral, and physiological analyses of orcokinins and orcokinin precursor-related peptides in the lobster Homarus americanus and the crayfish Procambarus clarkii. Peptides 30:297–317

    CAS  PubMed  Google Scholar 

  63. Hsu YW, Stemmler EA, Messinger DI, Dickinson PS, Christie AE, De la Iglesia HO (2008) Cloning and differential expression of two beta-pigment-dispersing hormone (beta-PDH) isoforms in the crab Cancer productus: evidence for authentic beta-PDH as a local neurotransmitter and beta-PDH II as a humoral factor. J Comp Neurol 508:197–211

    CAS  PubMed  Google Scholar 

  64. Dickinson PS, Stemmler EA, Cashman CR, Brennan HR, Dennison B, Huber KE, Peguero B, Rabacal W, Goiney CC, Smith CM, Towle DW, Christie AE (2008) SIFamide peptides in clawed lobsters and freshwater crayfish (Crustacea, Decapoda, Astacidea): a combined molecular, mass spectrometric and electrophysiological investigation. Gen Comp Endocrinol 156:347–360

    CAS  PubMed  Google Scholar 

  65. Bulau P, Meisen I, Schmitz T, Keller R, Peter-Katalinic J (2004) Identification of neuropeptides from the sinus gland of the crayfish Orconectes limosus using nanoscale on-line liquid chromatography tandem mass spectrometry. Mol Cell Proteom 3:558–564

    CAS  Google Scholar 

  66. Dircksen H, Bocking D, Heyn U, Mandel C, Chung JS, Baggerman G, Verhaert P, Daufeldt S, Plosch T, Jaros PP, Waelkens E, Keller R, Webster SG (2001) Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem J 356:159–170

    CAS  PubMed  Google Scholar 

  67. Fu Q, Christie AE, Li L (2005) Mass spectrometric characterization of crustacean hyperglycemic hormone precursor-related peptides (CPRPs) from the sinus gland of the crab, Cancer productus. Peptides 26:2137–2150

    CAS  PubMed  Google Scholar 

  68. Ma MM, Chen RB, Ge Y, He H, Marshall AG, Li L (2009) Combining bottom-up and top-down mass spectrometric strategies for de novo sequencing of the crustacean hyperglycemic hormone from Cancer borealis. Anal Chem 81:240–247

    CAS  PubMed  Google Scholar 

  69. Fu Q, Li L (2005) De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation. Anal Chem 77:7783–7795

    CAS  PubMed  Google Scholar 

  70. Wang J, Ma M, Chen R, Li L (2008) Enhanced neuropeptide profiling via capillary electrophoresis off-line coupled with MALDI FTMS. Anal Chem 80:6168–6177

    CAS  PubMed  Google Scholar 

  71. Wang JH, Jiang XY, Sturm RM, Li L (2009) Combining tissue extraction and off-line capillary electrophoresis matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for neuropeptide analysis in individual neuronal organs using 2,5-dihydroxybenzoic acid as a multi-functional agent. J Chromatogr A 1216:8283–8288

    CAS  PubMed  Google Scholar 

  72. Ma MM, Sturm RM, Kutz-Naber KK, Fu Q, Li L (2009) Immunoaffinity-based mass spectrometric characterization of the FMRFamide-related peptide family in the pericardial organ of Cancer borealis. Biochem Biophys Res Commun 390:325–330

    CAS  PubMed  Google Scholar 

  73. Fricker LD, Lim JY, Pan H, Che FY (2006) Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev 25:327–344

    CAS  PubMed  Google Scholar 

  74. Chen R, Hui L, Cape SS, Wang J, Li L (2010) Comparative neuropeptidomic analysis of food intake via a multifaceted mass spectrometric approach. ACS Chem Neurosci 1:204–214

    CAS  PubMed  Google Scholar 

  75. Keller R (1992) Crustacean neuropeptides––structures, functions and comparative aspects. Experientia 48:439–448

    CAS  PubMed  Google Scholar 

  76. Skiebe P, Schneider H (1994) Allatostatin peptides in the crab stomatogastric nervous system: inhibition of the pyloric motor pattern and distribution of allatostatin-like immunoreactivity. J Exp Biol 194:195–208

    CAS  PubMed  Google Scholar 

  77. Duve H, Johnsen AH, Scott AG, Thorpe A (2002) Allatostatins of the tiger prawn, Penaeus monodon (Crustacea: Penaeidea). Peptides 23:1039–1051

    CAS  PubMed  Google Scholar 

  78. Yin GL, Yang JS, Cao JX, Yang WJ (2006) Molecular cloning and characterization of FGLamide allatostatin gene from the prawn, Macrobrachium rosenbergii. Peptides 27:1241–1250

    CAS  PubMed  Google Scholar 

  79. Yasuda-Kamatani Y, Yasuda A (2006) Characteristic expression patterns of allatostatin-like peptide, FMRFamide-related peptide, orcokinin, tachykinin-related peptide, and SIFamide in the olfactory system of crayfish Procambarus clarkii. J Comp Neurol 496:135–147

    CAS  PubMed  Google Scholar 

  80. Christie AE, Sousa GL, Rus S, Smith CM, Towle DW, Hartline DK, Dickinson PS (2008) Identification of A-type allatostatins possessing -YXFGI/Vamide carboxy-termini from the nervous system of the copepod crustacean Calanus finmarchicus. Gen Comp Endocrinol 155:526–533

    CAS  PubMed  Google Scholar 

  81. Skiebe P (1999) Allatostatin-like immunoreactivity in the stomatogastric nervous system and the pericardial organs of the crab Cancer pagurus, the lobster Homarus americanus, and the crayfish Cherax destructor and Procambarus clarkii. J Comp Neurol 403:85–105

    CAS  PubMed  Google Scholar 

  82. Jorge-Rivera JC, Marder E (1997) Allatostatin decreases stomatogastric neuromuscular transmission in the crab Cancer borealis. J Exp Biol 200:2937–2946

    CAS  PubMed  Google Scholar 

  83. Cruz-Bermudez ND, Marder E (2007) Multiple modulators act on the cardiac ganglion of the crab, Cancer borealis. J Exp Biol 210:2873–2884

    CAS  PubMed  Google Scholar 

  84. Kreissl S, Weiss T, Djokaj S, Balezina O, Rathmayer W (1999) Allatostatin modulates skeletal muscle performance in crustaceans through pre- and postsynaptic effects. Eur J Neurosci 11:2519–2530

    CAS  PubMed  Google Scholar 

  85. Kwok R, Zhang JR, Tobe SS (2005) Regulation of methyl farnesoate production by mandibular organs in the crayfish, Procambarus clarkii: a possible role for allatostatins. J Insect Physiol 51:367–378

    CAS  PubMed  Google Scholar 

  86. Fu Q, Tang LS, Marder E, Li L (2007) Mass spectrometric characterization and physiological actions of VPNDWAHFRGSWamide, a novel B type allatostatin in the crab, Cancer borealis. J Neurochem 101:1099–1107

    CAS  PubMed  Google Scholar 

  87. Wilson CH, Christie AE (2010) Distribution of allatostatin C (AST-C)-like immunoreactivity in the central nervous system of the copepod Calanus finmarchicus. Gen Comp Endocrinol 167:252–260

    CAS  PubMed  Google Scholar 

  88. Wilcockson DC, Webster SG (2008) Identification and developmental expression of mRNAs encoding putative insect cuticle hardening hormone, bursicon, in the green shore crab Carcinus maenas. Gen Comp Endocrinol 156:113–125

    CAS  PubMed  Google Scholar 

  89. Porras MG, De Loof A, Breuer M, Arechiga H (2003) Corazonin promotes tegumentary pigment migration in the crayfish Procambarus clarkii. Peptides 24:1581–1589

    CAS  PubMed  Google Scholar 

  90. Stangier J, Hilbich C, Beyreuther K, Keller R (1987) Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. PNAS 84:575–579

    CAS  PubMed  Google Scholar 

  91. Chung JS, Wilcockson DC, Zmora N, Zohar Y, Dircksen H, Webster SG (2006) Identification and developmental expression of mRNAs encoding crustacean cardioactive peptide (CCAP) in decapod crustaceans. J Exp Biol 209:3862–3872

    CAS  PubMed  Google Scholar 

  92. Dickinson PS, Stemmler EA, Christie AE (2008) The pyloric neural circuit of the herbivorous crab Pugettia producta shows limited sensitivity to several neuromodulators that elicit robust effects in more opportunistically feeding decapods. J Exp Biol 211:1434–1447

    CAS  PubMed  Google Scholar 

  93. Fort TJ, Garcia-Crescioni K, Agricola HJ, Brezina V, Miller MW (2007) Regulation of the crab heartbeat by crustacean cardioactive peptide (CCAP): central and peripheral actions. J Neurophysiol 97:3407–3420

    CAS  PubMed  Google Scholar 

  94. Pulver SR, Marder E (2002) Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus. J Comp Neurol 451:79–90

    CAS  PubMed  Google Scholar 

  95. Stangier J, Hilbich C, Dircksen H, Keller R (1988) Distribution of a novel cardioactive neuropeptide (CCAP) in the nervous system of the shore crab Carcinus maenas. Peptides 9:795–800

    CAS  PubMed  Google Scholar 

  96. Mulloney B, Namba H, Agricola HJ, Hall WM (1997) Modulation of force during locomotion: differential action of crustacean cardioactive peptide on power-stroke and return-stroke motor neurons. J Neurosci 17:6872–6883

    CAS  PubMed  Google Scholar 

  97. Trube A, Audehm U, Dircksen H (1994) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish. J Comp Neurol 348:80–93

    CAS  PubMed  Google Scholar 

  98. Wilkens JL (1997) Possible mechanisms of control of vascular resistance in the lobster Homarus americanus. J Exp Biol 200:487–493

    PubMed  Google Scholar 

  99. DeLong ND, Kirby MS, Blitz DM, Nusbaum MP (2009) Parallel regulation of a modulator-activated current via distinct dynamics underlies comodulation of motor circuit output. J Neurosci 29:12355–12367

    CAS  PubMed  Google Scholar 

  100. Kirby MS, Nusbaum MP (2007) Peptide hormone modulation of a neuronally modulated motor circuit. J Neurophysiol 98:3206–3220

    CAS  PubMed  Google Scholar 

  101. Richards KS, Marder E (2000) The actions of crustacean cardioactive peptide on adult and developing stomatogastric ganglion motor patterns. J Neurobiol 44:31–44

    CAS  PubMed  Google Scholar 

  102. Weimann JM, Skiebe P, Heinzel HG, Soto C, Kopell N, JorgeRivera JC, Marder E (1997) Modulation of oscillator interactions in the crab stomatogastric ganglion by crustacean cardioactive peptide. J Neurosci 17:1748–1760

    CAS  PubMed  Google Scholar 

  103. Jorge-Rivera JC, Sen K, Birmingham JT, Abbott LF, Marder E (1998) Temporal dynamics of convergent modulation at a crustacean neuromuscular junction. J Neurophysiol 80:2559–2570

    CAS  PubMed  Google Scholar 

  104. Nery LEM, Da Silva MA, Castrucci AMD (1999) Possible role of non-classical chromatophorotropins on the regulation of the crustacean erythrophore. J Exp Zool 284:711–716

    CAS  PubMed  Google Scholar 

  105. Granato FC, Tironi TS, Maciel FE, Rosa CE, Vargas MA, Nery LEM (2004) Circadian rhythm of pigment migration induced by chromatrophorotropins in melanophores of the crab Chasmagnathus granulata. Comp Biochem Physiol A Mol Integr Physiol 138:313–319

    PubMed  Google Scholar 

  106. Gaus G, Stieve H (1992) The effect of neuropeptides on the ERG of the crayfish Orconectes limosus. Zeitschrift Fur Naturforschung C 47:300–303

    CAS  Google Scholar 

  107. Chung JS, Webster SG (2004) Expression and release patterns of neuropeptides during embryonic development and hatching of the green shore crab, Carcinus maenas. Development 131:4751–4761

    CAS  PubMed  Google Scholar 

  108. Phlippen MK, Webster SG, Chung JS, Dircksen H (2000) Ecdysis of decapod crustaceans is associated with a dramatic release of crustacean cardioactive peptide into the haemolymph. J Exp Biol 203:521–536

    CAS  PubMed  Google Scholar 

  109. Böcking D, Dircksen H, Keller R (2002) The crustacean neuropeptides of the CHH/MIH/GIH family: stuctures and biological activities. In: Wiese K (ed) The crustacean nervous system. Springer, Heidelberg, pp 84–97

    Google Scholar 

  110. Chan SM, Gu PL, Chu KH, Tobe SS (2003) Crustacean neuropeptide genes of the CHH/MIH/GIH family: implications from molecular studies. Gen Comp Endocrinol 134:214–219

    CAS  PubMed  Google Scholar 

  111. Chung JS, Zmora N, Katayama H, Tsutsui N (2010) Crustacean hyperglycemic hormone (CHH) neuropeptides family: functions, titer, and binding to target tissues. Gen Comp Endocrinol 166:447–454

    CAS  PubMed  Google Scholar 

  112. Fanjul-Moles ML (2006) Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C Toxicol Pharmacol 142:390–400

    PubMed  Google Scholar 

  113. Lacombe C, Greve P, Martin G (1999) Overview on the sub-grouping of the crustacean hyperglycemic hormone family. Neuropeptides 33:71–80

    CAS  PubMed  Google Scholar 

  114. Nakatsuji T, Lee CY, Watson RD (2009) Crustacean molt-inhibiting hormone: structure, function, and cellular mode of action. Comp Biochem Physiol A Mol Integr Physiol 152:139–148

    PubMed  Google Scholar 

  115. Soyez D (1997) Occurrence and diversity of neuropeptides from the crustacean hyperglycemic hormone family in arthropods––a short review. Neuropeptides Dev Aging 814:319–323

    CAS  Google Scholar 

  116. Van Herp F (1998) Molecular, cytological and physiological aspects of the crustacean hyperglycemic hormone family. Soc Exp Biol Sem Ser 65:53–70

    Google Scholar 

  117. Kegel G, Reichwein B, Weese S, Gaus G, Peter-Katalinic J, Keller R (1989) Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS Lett 255:10–14

    CAS  PubMed  Google Scholar 

  118. Greve P, Sorokine O, Berges T, Lacombe C, Van Dorsselaer A, Martin G (1999) Isolation and amino acid sequence of a peptide with vitellogenesis inhibiting activity from the terrestrial isopod Armadillidium vulgare (Crustacea). Gen Comp Endocrinol 115:406–414

    CAS  PubMed  Google Scholar 

  119. Martin G, Sorokine O, Vandorsselaer A (1993) Isolation and molecular characterization of a hyperglycemic neuropeptide from the sinus gland of the terrestrial isopod Armadillidium vulgare (Crustacea). Eur J Biochem 211:601–607

    CAS  PubMed  Google Scholar 

  120. Chung JS, Wilkinson MC, Webster SG (1996) Determination of the amino acid sequence of the moult-inhibiting hormone from the edible crab, Cancer pagurus. Neuropeptides 30:95–101

    CAS  PubMed  Google Scholar 

  121. Chung JS, Wilkinson MC, Webster SG (1998) Amino acid sequences of both isoforms of crustacean hyperglycemic hormone (CHH) and corresponding precursor-related peptide in Cancer pagurus. Regul Pept 77:17–24

    CAS  PubMed  Google Scholar 

  122. Wainwright G, Webster SG, Wilkinson MC, Chung JS, Rees HH (1996) Structure and significance of mandibular organ-inhibiting hormone in the crab, Cancer pagurus: involvement in multihormonal regulation of growth and reproduction. J Biol Chem 271:12749–12754

    CAS  PubMed  Google Scholar 

  123. Hsu YW, Messinger DI, Chung JS, Webster SG, de la Iglesia HO, Christie AE (2006) Members of the crustacean hyperglycemic hormone (CHH) peptide family are differentially distributed both between and within the neuroendocrine organs of Cancer crabs: implications for differential release and pleiotropic function. J Exp Biol 209:3241–3256

    CAS  PubMed  Google Scholar 

  124. Chung JS, Dircksen H, Webster SG (1999) A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. PNAS 96:13103–13107

    CAS  PubMed  Google Scholar 

  125. Webster SG, Dircksen H, Chung JS (2000) Endocrine cells in the gut of the shore crab Carcinus maenas immunoreactive to crustacean hyperglycaemic hormone and its precursor-related peptide. Cell Tissue Res 300:193–205

    CAS  PubMed  Google Scholar 

  126. Wilcockson DC, Chung JS, Webster SG (2002) Is crustacean hyperglycaemic hormone precursor-related peptide a circulating neurohormone in crabs? Cell Tissue Res 307:129–138

    CAS  PubMed  Google Scholar 

  127. Christie AE, Stevens JS, Bowers MR, Chapline MC, Jensen DA, Schegg KM, Goldwaser J, Kwiatkowski MA, Pleasant TK, Shoenfeld L, Tempest LK, Williams CR, Wiwatpanit T, Smith CM, Beale KM, Towle DW, Schooley DA, Dickinson PS (2010) Identification of a calcitonin-like diuretic hormone that functions as an intrinsic modulator of the American lobster, Homarus americanus, cardiac neuromuscular system. J Exp Biol 213:118–127

    CAS  PubMed  Google Scholar 

  128. Zitnan D, Kim YJ, Zitnanova I, Roller L, Adams ME (2007) Complex steroid-peptide-receptor cascade controls insect ecdysis. Gen Comp Endocrinol 153:88–96

    CAS  PubMed  Google Scholar 

  129. Luschen W, Buck F, Willig A, Jaros PP (1991) Isolation, sequence-analysis, and physiological properties of enkephalins in the nervous tissue of the shore crab Carcinus maenas L. PNAS 88:8671–8675

    CAS  PubMed  Google Scholar 

  130. Dircksen H (1992) Fine structure of the neurohemal sinus gland of the shore crab, Carcinus maenas, and immuno-electron microscopic identification of neurosecretory endings according to their neuropeptide contents. Cell Tissue Res 269:249–266

    CAS  PubMed  Google Scholar 

  131. Fingerman M, Hanumante MM, Kulkarni GK, Ikeda R, Vacca LL (1985) Localization of substance P-like, leucine-enkephalin-like, methionine-enkephalin-like, and FMRFamide-like immunoreactivity in the eyestalk of the fiddler crab, Uca pugilator. Cell Tissue Res 241:473–477

    CAS  PubMed  Google Scholar 

  132. Hanke J, Jaros PP, Willig A (1993) Autoradiographic localization of opioid binding-sites combined with immunogold detection of leu-enkephalin, crustacean hyperglycemic hormone and molt inhibiting hormone at the electron-microscopic level in the sinus gland of the shore crab, Carcinus maenas. Histochemistry 99:405–410

    CAS  PubMed  Google Scholar 

  133. Leung MK, Kessler H, Whitefield K, Murray M, Martinez EA, Stefano GB (1987) The presence of enkephalin-like substances in the eyestalk and brain of the land crab Gecarcinus lateralis. Cell Mol Neurobiol 7:91–96

    CAS  PubMed  Google Scholar 

  134. Mancillas JR, McGinty JF, Selverston AI, Karten H, Bloom FE (1981) Immunocytochemical localization of enkephalin and substance P in retina and eyestalk neurones of lobster. Nature 293:576–578

    CAS  PubMed  Google Scholar 

  135. Ollivaux C, Dircksen H, Toullec JY, Soyez D (2002) Enkephalinergic control of the secretory activity of neurons producing stereoisomers of crustacean hyperglycemic hormone in the eyestalk of the crayfish Orconectes limosus. J Comp Neurol 444:1–9

    CAS  PubMed  Google Scholar 

  136. Palmisano A, Marino G, Di Marzo V, Morris HR, Howlett TA, Tomlin S (1986) RIA/chromatographic evidence for novel opioid peptide(s) in Squilla mantis ganglia. Neuropeptides 7:281–289

    CAS  PubMed  Google Scholar 

  137. Lorenzon S, Brezovec S, Ferrero EA (2004) Species-specific effects on hemolymph glucose control by serotonin, dopamine, and L-enkephalin and their inhibitors in Squilla mantis and Astacus leptodactylus (Crustacea). J Exp Zool A Comp Exp Biol 301:727–736

    PubMed  Google Scholar 

  138. Nagabhushanam R, Sarojini R, Reddy PS, Devi M, Fingerman M (1995) Opioid peptides in invertebrates: localization, distribution and possible functional roles. Curr Sci 69:659–671

    CAS  Google Scholar 

  139. Sarojini R, Nagabhushanam R, Fingerman M (1995) Dopaminergic and enkephalinergic involvement in the regulation of blood glucose in the red swamp crayfish, Procambarus clarkii. Gen Comp Endocrinol 97:160–170

    CAS  PubMed  Google Scholar 

  140. Kishori B, Premasheela B, Ramamurthi R, Reddy PS (2001) Evidence for a hyperglycemic effect of methionine-enkephalin in the prawns Penaeus indicus and Metapenaeus monocerus. Gen Comp Endocrinol 123:90–99

    CAS  PubMed  Google Scholar 

  141. Kishori B, Reddy PS (2005) Role of methionine-enkephalin on the regulation of carbohydrate metabolism in the rice field crab Oziotelphusa senex senex. C R Biol 328:812–820

    CAS  PubMed  Google Scholar 

  142. Reddy PS, Basha MR (2001) On the mode of action of methionine enkephalin, FK 33–824 and naloxone in regulating the hemolymph glucose level in the fresh water field crab Oziotelphusa senex senex. Z Naturforschung C 56:629–632

    CAS  Google Scholar 

  143. Reddy PS, Kishori B (2001) Methionine-enkephalin induces hyperglycemia through eyestalk hormones in the estuarine crab Scylla serrata. Biol Bull 201:17–25

    CAS  Google Scholar 

  144. Hanke J, Willig A, Yinon U, Jaros PP (1997) Delta and kappa opioid receptors in eyestalk ganglia of a crustacean. Brain Res 744:279–284

    CAS  PubMed  Google Scholar 

  145. Kulkarni GK, Fingerman M (1987) Distal retinal pigment of the fiddler crab, Uca pugilator: Release of the dark-adapting hormone by methionine enkephalin and FMRFamide. Pigment Cell Res 1:51–56

    CAS  PubMed  Google Scholar 

  146. Martinez EA, Murray M, Leung MK, Stefano GB (1988) Evidence for dopaminergic and opioid involvement in the regulation of locomotor activity in the land crab Gecarcinus lateralis. Comp Biochem Physiol C Toxicol Pharmacol 90:89–93

    CAS  Google Scholar 

  147. Quackenbush LS, Fingerman M (1984) Regulation of neurohormone release in the fiddler crab, Uca pugilator: effects of gamma-aminobutyric acid, octopamine, Met-enkephalin, and beta-endorphin. Comp Biochem Physiol C Toxicol Pharmacol 79:77–84

    CAS  Google Scholar 

  148. Kishori B, Reddy PS (2003) Influence of leucine-enkephalin on moulting and vitellogenesis in the freshwater crab, Oziotelphusa senex senex (Fabricius, 1791) (Decapoda, Brachyura). Crustaceana 76:1281–1290

    Google Scholar 

  149. Sarojini R, Nagabhushanam R, Fingerman M (1995) Evidence for opioid involvement in the regulation of ovarian maturation of the fiddler-crab, Uca pugilator. Comp Biochem Physiol A Physiol 111:279–282

    Google Scholar 

  150. Sarojini R, Nagabhushanam R, Fingerman M (1996) In vivo assessment of opioid agonists and antagonists on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 115:149–153

    CAS  PubMed  Google Scholar 

  151. Sarojini R, Nagabhushanam R, Fingerman M (1997) An in vitro study of the inhibitory action of methionine enkephalin on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 117:207–210

    Google Scholar 

  152. Nagabhushanam R, Sarojini R, Fingerman M (1995) In vivo assessment of opioid agonists and antagonists on ovarian maturation in the red swamp crayfish, Procambarus clarkii. Am Zool 35:26A

    Google Scholar 

  153. Reddy PS (2000) Involvement of opioid peptides in the regulation of reproduction in the prawn Penaeus indicus. Naturwissenschaften 87:535–538

    CAS  PubMed  Google Scholar 

  154. Stevens JS, Cashman CR, Smith CM, Beale KM, Towle DW, Christie AE, Dickinson PS (2009) The peptide hormone pQDLDHVFLRFamide (crustacean myosuppressin) modulates the Homarus americanus cardiac neuromuscular system at multiple sites. J Exp Biol 212:3961–3976

    CAS  PubMed  Google Scholar 

  155. Sithigorngul P, Saraithongkum W, Jaideechoey S, Longyant S, Sithigorngul W (1998) Novel FMRFamide-like neuropeptides from the eyestalk of the giant freshwater prawn Macrobrachium rosenbergii. Comp Biochem Physiol B Biochem Mol Biol 120:587–595

    Google Scholar 

  156. Sithigorngul P, Pupuem H, Krungkolsem C, Longyant S, Panchan N, Chaivisuthangkura P, Sithigorngul W, Petsom A (2002) Four novel PYFs: members of NPY/PP peptide superfamily from the eyestalk of the giant tiger prawn Penaeus monodon. Peptides 23:1895–1906

    CAS  PubMed  Google Scholar 

  157. Sithigorngul P, Pupuem J, Krungkasem C, Longyant S, Chaivisuthangkura P, Sithigorngul W, Petsom A (2002) Seven novel FMRFamide-like neuropeptide sequences from the eyestalk of the giant tiger prawn Penaeus monodon. Comp Biochem Physiol B Biochem Mol Biol 131:325–337

    PubMed  Google Scholar 

  158. Dickinson PS, Stevens JS, Rus S, Brennan HR, Goiney CC, Smith CM, Li L, Towle DW, Christie AE (2007) Identification and cardiotropic actions of sulfakinin peptides in the American lobster Homarus americanus. J Exp Biol 210:2278–2289

    CAS  PubMed  Google Scholar 

  159. Krajniak KG (1991) The identification and structure-activity relations of a cardioactive FMRFamide-related peptide from the blue crab Callinectes sapidus. Peptides 12:1295–1302

    CAS  PubMed  Google Scholar 

  160. Krajniak KG, Price DA, Greenberg MJ (1990) GYNRSFLRFamide, a novel FMRFamide-related peptide from Callinectes sapidus. Am Zool 30:A29

    Google Scholar 

  161. Mercier AJ, Orchard I, Tebrugge V, Skerrett M (1993) Isolation of two FMRFamide-related peptides from crayfish pericardial organs. Peptides 14:137–143

    CAS  PubMed  Google Scholar 

  162. Fort TJ, Brezina V, Miller MW (2007) Regulation of the crab heartbeat by FMRFamide-like peptides: multiple interacting effects on center and periphery. J Neurophysiol 98:2887–2902

    PubMed  Google Scholar 

  163. Jorge-Rivera JC, Marder E (1996) TNRNFLRFamide and SDRNFLRFamide modulate muscles of the stomatogastric system of the crab Cancer borealis. J Comp Physiol A Sens Neurol Behav Physiol 179:741–751

    CAS  Google Scholar 

  164. McGaw IJ, McMahon BR (1995) The FMRFamide-related peptides F1 and F2 alter hemolymph distribution and cardiac-output in the crab Cancer magister. Biol Bull 188:186–196

    CAS  PubMed  Google Scholar 

  165. Mercier AJ, Schiebe M, Atwood HL (1990) Pericardial peptides enhance synaptic transmission and tension in phasic extensor muscles of crayfish. Neurosci Lett 111:92–98

    CAS  PubMed  Google Scholar 

  166. Meyrand P, Marder E (1991) Matching neural and muscle oscillators: control by FMRFamide-like peptides. J Neurosci 11:1150–1161

    CAS  PubMed  Google Scholar 

  167. Verley DR, Doan V, Trieu Q, Messinger DI, Birmingham JT (2008) Characteristic differences in modulation of stomatogastric musculature by a neuropeptide in three species of Cancer crabs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:879–886

    CAS  PubMed  Google Scholar 

  168. Weimann JM, Marder E, Evans B, Calabrese RL (1993) The effects of SDRNFLRFamide and TNRNFLRFamide on the motor patterns of the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol 181:1–26

    CAS  PubMed  Google Scholar 

  169. Worden MK, Kravitz EA, Goy MF (1995) Peptide F1, an N-terminally extended analog of FMRFamide, enhances contractile activity in multiple target tissues in lobster. J Exp Biol 198:97–108

    CAS  PubMed  Google Scholar 

  170. Cruz-Bermudez ND, Fu Q, Kutz-Naber KK, Christie AE, Li L, Marder E (2006) Mass spectrometric characterization and physiological actions of GAHKNYLRFamide, a novel FMRFamide-like peptide from crabs of the genus Cancer. J Neurochem 97:784–799

    CAS  PubMed  Google Scholar 

  171. Nieto J, Veelaert D, Derua R, Waelkens E, Cerstiaens A, Coast G, Devreese B, Van Beeumen J, Calderon J, De Loof A, Schoofs L (1998) Identification of one tachykinin- and two kinin-related peptides in the brain of the white shrimp, Penaeus vannamei. Biochem Biophys Res Commun 248:406–411

    CAS  PubMed  Google Scholar 

  172. Nieto J, Veenstra J, Waelkens E, Calderón J, Baggerman G, Veelaert D, De Loof A, Schoofs L (1999) Isolation and identification of one tachykinin and three kinin-related peptides in the central nervous system of Penaeus vannamei. In: Schram FR, von Vaupel Klein JC (eds) Proceedings of the fourth international crustacean congress. Brill, Köln, pp 951–960

    Google Scholar 

  173. Saideman SR, Christie AE, Torfs P, Huybrechts J, Schoofs L, Nusbaum MP (2006) Actions of kinin peptides in the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol 209:3664–3676

    CAS  PubMed  Google Scholar 

  174. Blitz DM, Christie AE, Marder E, Nusbaum MP (1995) Distribution and effects of tachykinin-like peptides in the stomatogastric nervous system of the crab, Cancer borealis. J Comp Neurol 354:282–294

    CAS  PubMed  Google Scholar 

  175. Stangier J, Hilbich C, Burdzik S, Keller R (1992) Orcokinin: a novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides 13:859–864

    CAS  PubMed  Google Scholar 

  176. Bungart D, Hilbich C, Dircksen H, Keller R (1995) Occurrence of analogs of the myotropic neuropeptide orcokinin in the shore crab, Carcinus maenas: evidence for a novel neuropeptide family. Peptides 16:67–72

    CAS  PubMed  Google Scholar 

  177. Dircksen H, Burdzik S, Sauter A, Keller R (2000) Two orcokinins and the novel octapeptide orcomyotropin in the hindgut of the crayfish Orconectes limosus: identified myostimulatory neuropeptides originating together in neurones of the terminal abdominal ganglion. J Exp Biol 203:2807–2818

    CAS  PubMed  Google Scholar 

  178. Bungart D, Dircksen H, Keller R (1994) Quantitative-determination and distribution of the myotropic neuropeptide orcokinin in the nervous system of Astacidean crustaceans. Peptides 15:393–400

    CAS  PubMed  Google Scholar 

  179. Kleinholz LH (1975) Purified hormones from the crustacean eyestalk and their physiological specificity. Nature 258:256–257

    CAS  PubMed  Google Scholar 

  180. Rao KR, Riehm JP, Zahnow CA, Kleinholz LH, Tarr GE, Johnson L, Norton S, Landau M, Semmes OJ et al (1985) Characterization of a pigment-dispersing hormone in eyestalks of the fiddler crab Uca pugilator. PNAS 82:5319–5322

    CAS  PubMed  Google Scholar 

  181. de Kleijn DPV, Linck B, Klein JM, Weidemann WM, Keller R, van Herp F (1993) Structure and localization of mRNA encoding a pigment dispersing hormone (PDH) in the eyestalk of the crayfish Orconectes limosus. FEBS Lett 321:251–255

    PubMed  Google Scholar 

  182. DesmoucellesCarette C, Sellos D, VanWormhoudt A (1996) Molecular cloning of the precursors of pigment dispersing hormone in crustaceans. Biochem Biophys Res Commun 221:739–743

    CAS  Google Scholar 

  183. Klein JM, Dekleijn DPV, Keller R, Weidemann WM (1992) Molecular-cloning of crustacean pigment dispersing hormone precursor. Biochem Biophys Res Commun 189:1509–1514

    CAS  PubMed  Google Scholar 

  184. Klein JM, Mohrherr CJ, Sleutels F, Riehm JP, Rao KR (1994) Molecular cloning of 2 pigment-dispersing hormone (PDH) precursors in the blue crab Callinectes sapidus reveals a novel member of the PDH neuropeptide family. Biochem Biophys Res Commun 205:410–416

    CAS  PubMed  Google Scholar 

  185. Lohr J, Klein J, Webster SG, Dircksen H (1993) Quantification, immunoaffinity purification and sequence analysis of a pigment-dispersing hormone of the shore crab, Carcinus maenas (L.). Comp Biochem Physiol B Biochem Mol Biol 104:699–706

    CAS  Google Scholar 

  186. McCallum ML, Rao KR, Riehm JP, Mohrherr CJ, Morgan WT (1991) Primary structure and relative potency of an analog of beta-PDH (pigment-dispersing hormone) from the crayfish Procambarus clarkii. Pigment Cell Res 4:201–208

    CAS  PubMed  Google Scholar 

  187. Ohira T, Nagasawa H, Aida K (2002) Molecular cloning of cDNAs encoding two pigment-dispersing hormones and two corresponding genes from the kuruma prawn (Penaeus japonicus). Mar Biotechnol 4:463–470

    CAS  PubMed  Google Scholar 

  188. Ohira T, Tsutsui N, Kawazoe I, Wilder MN (2006) Isolation and characterization of two pigment-dispersing hormones from the whiteleg shrimp, Litopenaeus vannamei. Zool Sci 23:601–606

    CAS  PubMed  Google Scholar 

  189. Yang WJ, Aida K, Nagasawa H (1999) Characterization of chromatophorotropic neuropeptides from the kuruma prawn Penaeus japonicus. Gen Comp Endocrinol 114:415–424

    CAS  PubMed  Google Scholar 

  190. Rao KR (2001) Crustacean pigmentary-effector hormones: chemistry and functions of RPCH, PDH, and related peptides. Am Zool 41:364–379

    CAS  Google Scholar 

  191. Rao KR, Riehm JP (1993) Pigment-dispersing hormones. Ann NY Acad Sci 680:78–88

    CAS  PubMed  Google Scholar 

  192. Knowles AC (1992) Isolation and characterization of a pigment-dispersing hormone from the terrestrial isopod, Armadillidium vulgare. The University of West Florida, Pensacola, Florida

    Google Scholar 

  193. Mangerich S, Keller R (1988) Localization of pigment-dispersing hormone (PDH) immunoreactivity in the central nervous system of Carcinus maenas and Orconectes limosus (Crustacea), with reference to FMRFamide immunoreactivity in O. limosus. Cell Tissue Res 253:199–208

    CAS  PubMed  Google Scholar 

  194. Mortin LI, Marder E (1991) Differential distribution of beta-pigment-dispersing hormone (beta-PDH)-like immunoreactivity in the stomatogastric nervous-system of 5 species of decapod crustaceans. Cell Tissue Res 265:19–33

    CAS  PubMed  Google Scholar 

  195. Sousa GL, Lenz PH, Hartline DK, Christie AE (2008) Distribution of pigment dispersing hormone- and tachykinin-related peptides in the central nervous system of the copepod crustacean Calanus finmarchicus. Gen Comp Endocrinol 156:454–459

    CAS  PubMed  Google Scholar 

  196. Harzsch S, Dircksen H, Beltz B (2009) Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell Tissue Res 335:417–429

    CAS  PubMed  Google Scholar 

  197. Sullivan JM, Genco MC, Marlow ED, Benton JL, Beltz BS, Sandeman DC (2009) Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish. Chronobiol Int 26:1136–1168

    CAS  PubMed  Google Scholar 

  198. Verde MA, Barriga-Montoya C, Fuentes-Pardo B (2007) Pigment dispersing hormone generates a circadian response to light in the crayfish, Procambarus clarkii. Comp Biochem Physiol A Mol Integr Physiol 147:983–992

    CAS  PubMed  Google Scholar 

  199. Bishop CA, Wine JJ, O’Shea M (1984) Neuropeptide proctolin in postural motoneurons of the crayfish. J Neurosci 4:2001–2009

    CAS  PubMed  Google Scholar 

  200. Schwarz TL, Lee GMH, Siwicki KK, Standaert DG, Kravitz EA (1984) Proctolin in the lobster: the distribution, release, and chemical characterization of a likely neurohormone. J Neurosci 4:1300–1311

    CAS  PubMed  Google Scholar 

  201. Sullivan RE (1979) A proctolin-like peptide in crab pericardial organs. J Exp Zool 210:543–552

    CAS  Google Scholar 

  202. Beltz BS, Pontes M, Helluy SM, Kravitz EA (1990) Patterns of appearance of serotonin and proctolin immunoreactivities in the developing nervous system of the American lobster. J Neurobiol 21:521–542

    CAS  PubMed  Google Scholar 

  203. Christie AE, Baldwin D, Turrigiano G, Graubard K, Marder E (1995) Immunocytochemical localization of multiple cholecystokinin-like peptides in the stomatogastric nervous system of the crab Cancer borealis. J Exp Biol 198:263–271

    CAS  PubMed  Google Scholar 

  204. Marder E, Hooper SL, Siwicki KK (1986) Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric nervous system. J Comp Neurol 243:454–467

    CAS  PubMed  Google Scholar 

  205. Siwicki KK, Beltz BS, Kravitz EA (1987) Proctolin in identified serotonergic, dopaminergic, and cholinergic neurons in the lobster, Homarus americanus. J Neurosci 7:522–532

    CAS  PubMed  Google Scholar 

  206. Siwicki KK, Beltz BS, Schwarz TL, Kravitz EA (1985) Proctolin in the lobster nervous system. Peptides 6:393–402

    CAS  PubMed  Google Scholar 

  207. Siwicki KK, Bishop CA (1986) Mapping of proctolinlike immunoreactivity in the nervous systems of lobster and crayfish. J Comp Neurol 243:435–453

    CAS  PubMed  Google Scholar 

  208. Skiebe P, Dietel C, Schmidt M (1999) Immunocytochemical localization of FLRFamide-, proctolin-, and CCAP-like peptides in the stomatogastric nervous system and neurohemal structures of the crayfish, Cherax destructor. J Comp Neurol 414:511–532

    CAS  PubMed  Google Scholar 

  209. Skiebe P, Ganeshina O (2000) Synaptic neuropil in nerves of the crustacean stomatogastric nervous system: an immunocytochemical and electron microscopical study. J Comp Neurol 420:373–397

    CAS  PubMed  Google Scholar 

  210. Stangier J, Dircksen H, Keller R (1986) Identification and immunocytochemical localization of proctolin in pericardial organs of the shore crab, Carcinus maenas. Peptides 7:67–72

    CAS  PubMed  Google Scholar 

  211. Wood DE, Nishikawa M, Derby CD (1996) Proctolin-like immunoreactivity and identified neurosecretory cells as putative substrates for modulation of courtship display behavior in the blue crab, Callinectes sapidus. J Comp Neurol 368:153–163

    CAS  PubMed  Google Scholar 

  212. Herbert ZS, Molnar L, Pollak E, Eckert M (2001) Proctolin-immunoreactive neurons in the central nervous system of Porcellio scaber. Neurobiology 9:41–42

    CAS  PubMed  Google Scholar 

  213. Bishop CA, Krouse ME, Wine JJ (1991) Peptide cotransmitter potentiates calcium channel activity in crayfish skeletal muscle. J Neurosci 11:269–276

    CAS  PubMed  Google Scholar 

  214. Bishop CA, Wine JJ, Nagy F, O’Shea MR (1987) Physiological consequences of a peptide cotransmitter in a crayfish nerve-muscle preparation. J Neurosci 7:1769–1779

    CAS  PubMed  Google Scholar 

  215. Kravitz EA, Glusman S, Harris-Warrick RM, Livingstone MS, Schwarz T, Goy MF (1980) Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies. J Exp Biol 89:159–175

    CAS  PubMed  Google Scholar 

  216. Schwarz TL, Harris-Warrick RM, Glusman S, Kravitz EA (1980) A peptide action in a lobster neuromuscular preparation. J Neurobiol 11:623–628

    CAS  PubMed  Google Scholar 

  217. Freschi JE (1989) Proctolin activates a slow, voltage-dependent sodium current in motoneurons of the lobster cardiac ganglion. Neurosci Lett 106:105–111

    CAS  PubMed  Google Scholar 

  218. Miller MW, Sullivan RE (1981) Some effects of proctolin on the cardiac ganglion of the Maine lobster, Homarus americanus (Milne Edwards). J Neurobiol 12:629–639

    CAS  PubMed  Google Scholar 

  219. Sullivan RE, Miller MW (1984) Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. J Neurobiol 15:173–196

    CAS  PubMed  Google Scholar 

  220. Wilkens JL, Cavey MJ, Shovkivska I, Zhang ML, ter Keurs H (2008) Elasticity, unexpected contractility and the identification of actin and myosin in lobster arteries. J Exp Biol 211:766–772

    CAS  PubMed  Google Scholar 

  221. Wilkens JL, Shinozaki T, Yazawa T, ter Keurs H (2005) Sites and modes of action of proctolin and the FLP F-2 on lobster cardiac muscle. J Exp Biol 208:737–747

    CAS  PubMed  Google Scholar 

  222. Wilkens JL, Taylor HH (2003) The control of vascular resistance in the southern rock lobster, Jasus edwardsii (Decapoda: Palinuridae). Comp Biochem Physiol A Mol Integr Physiol 135:369–376

    CAS  PubMed  Google Scholar 

  223. Dickinson PS, Marder E (1989) Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone. J Neurophysiol 61:833–844

    CAS  PubMed  Google Scholar 

  224. Heinzel HG (1988) Gastric mill activity in the lobster. II. Proctolin and octopamine initiate and modulate chewing. J Neurophysiol 59:551–565

    CAS  PubMed  Google Scholar 

  225. Heinzel HG, Selverston AI (1988) Gastric mill activity in the lobster. III. Effects of proctolin on the isolated central pattern generator. J Neurophysiol 59:566–585

    CAS  PubMed  Google Scholar 

  226. Hooper SL, Marder E (1984) Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide. Brain Res 305:186–191

    CAS  PubMed  Google Scholar 

  227. Hooper SL, Marder E (1987) Modulation of the lobster pyloric rhythm by the peptide proctolin. J Neurosci 7:2097–2112

    CAS  PubMed  Google Scholar 

  228. Rehm KJ, Deeg KE, Marder E (2008) Developmental regulation of neuromodulator function in the stomatogastric ganglion of the lobster, Homarus americanus. J Neurosci 28:9828–9839

    CAS  PubMed  Google Scholar 

  229. Mercier AJ, Wilkens JL (1985) Modulatory effects of proctolin on a crab ventilatory muscle. J Neurobiol 16:401–408

    CAS  PubMed  Google Scholar 

  230. Acevedo LD, Hall WM, Mulloney B (1994) Proctolin and excitation of the crayfish swimmeret system. J Comp Neurol 345:612–627

    CAS  PubMed  Google Scholar 

  231. Mulloney B, Acevedo LD, Bradbury AG (1987) Modulation of the crayfish swimmeret rhythm by octopamine and the neuropeptide proctolin. J Neurophysiol 58:584–597

    CAS  PubMed  Google Scholar 

  232. el Manira A, Rossidurand C, Clarac F (1991) Serotonin and proctolin modulate the response of a stretch-receptor in crayfish. Brain Res 541:157–162

    CAS  PubMed  Google Scholar 

  233. Pasztor VM, Bush BM (1987) Peripheral modulation of mechano-sensitivity in primary afferent neurons. Nature 326:793–795

    CAS  PubMed  Google Scholar 

  234. Pasztor VM, Bush BM (1989) Primary afferent responses of a crustacean mechanoreceptor are modulated by proctolin, octopamine, and serotonin. J Neurobiol 20:234–254

    CAS  PubMed  Google Scholar 

  235. Mercier AJ, Lee J (2002) Differential effects of neuropeptides on circular and longitudinal muscles of the crayfish hindgut. Peptides 23:1751–1757

    CAS  PubMed  Google Scholar 

  236. Erxleben CFJ, Desantis A, Rathmayer W (1995) Effects of proctolin on contractions, membrane resistance, and non-voltage-dependent sarcolemmal ion channels in crustacean muscle fibers. J Neurosci 15:4356–4369

    CAS  PubMed  Google Scholar 

  237. Hager SR, Bittar EE (1985) Hormones and the barnacle muscle fiber as a preparation. Comp Biochem Physiol C Toxicol Pharmacol 81:247–252

    CAS  Google Scholar 

  238. Tsukamoto YF, Kuwasawa K (2003) Neurohormonal and glutamatergic neuronal control of the cardioarterial valves in the isopod crustacean Bathynomus doederleini. J Exp Biol 206:431–443

    CAS  Google Scholar 

  239. Torfs P, Nieto J, Cerstiaens A, Boon D, Baggerman G, Poulos C, Waelkens E, Derua R, Calderon J, De Loof A, Schoofs L (2001) Pyrokinin neuropeptides in a crustacean––isolation and identification in the white shrimp Penaeus vannamei. Eur J Biochem 268:149–154

    CAS  PubMed  Google Scholar 

  240. Carlsen J, Christensen M, Josefsson L (1976) Purification and chemical structure of the red pigment-concentrating hormone of the prawn Leander adspersus. Gen Comp Endocrinol 30:327–331

    CAS  PubMed  Google Scholar 

  241. Linck B, Klein JM, Mangerich S, Keller R, Weidemann WM (1993) Molecular-cloning of crustacean red pigment concentrating hormone precursor. Biochem Biophys Res Commun 195:807–813

    CAS  PubMed  Google Scholar 

  242. Martinez-Perez F, Zinker S, Aguilar G, Valdes J, Arechiga H (2005) Circadian oscillations of RPCH gene expression in the eyestalk of the crayfish Cherax quadricarinatus. Peptides 26:2434–2444

    CAS  PubMed  Google Scholar 

  243. Stemmler EA, Gardner NP, Guiney ME, Bruns EA, Dickinson PS (2006) The detection of red pigment-concentrating hormone (RPCH) in crustacean eyestalk tissues using matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry: [M + Na](+) ion formation in dried droplet tissue preparations. J Mass Spectrom 41:295–311

    CAS  PubMed  Google Scholar 

  244. Zrala J, Kodrík D, Zahradníčková H, Zemek R, Socha R (2010) A novel function of red pigment-concentrating hormone in crustaceans: Porcellio scaber (Isopoda) as a model species. Gen Comp Endocrinol 166:330–336

    CAS  PubMed  Google Scholar 

  245. Fenelon VS, Kilman V, Meyrand P, Marder E (1999) Sequential developmental acquisition of neuromodulatory inputs to a central pattern generating network. J Comp Neurol 408:335–351

    CAS  PubMed  Google Scholar 

  246. Nusbaum MP, Marder E (1988) A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J Exp Biol 135:165–181

    CAS  Google Scholar 

  247. Sherff CM, Mulloney B (1991) Red pigment concentrating hormone is a modulator of the crayfish swimmeret system. J Exp Biol 155:21–35

    CAS  PubMed  Google Scholar 

  248. Dickinson PS, Hauptman J, Hetling J, Mahadevan A (2001) RPCH modulation of a multi-oscillator network: effects on the pyloric network of the spiny lobster. J Neurophysiol 85:1424–1435

    CAS  PubMed  Google Scholar 

  249. Dickinson PS, Mecsas C, Hetling J, Terio K (1993) The neuropeptide red pigment concentrating hormone affects rhythmic pattern generation at multiple sites. J Neurophysiol 69:1475–1483

    CAS  PubMed  Google Scholar 

  250. Dickinson PS, Mecsas C, Marder E (1990) Neuropeptide fusion of two motor pattern generator circuits. Nature 344:155–158

    CAS  PubMed  Google Scholar 

  251. Thirumalai V, Marder E (2002) Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets. J Neurosci 22:1874–1882

    CAS  PubMed  Google Scholar 

  252. Thirumalai V, Prinz AA, Johnson CD, Marder E (2006) Red pigment concentrating hormone strongly enhances the strength of the feedback to the pyloric rhythm oscillator but has little effect on pyloric rhythm period. J Neurophysiol 95:1762–1770

    CAS  PubMed  Google Scholar 

  253. Stemmler EA, Bruns EA, Gardner NP, Dickinson PS, Christie AE (2007) Mass spectrometric identification of pEGFYSQRYamide: a crustacean peptide hormone possessing a vertebrate neuropeptide Y (NPY)-like carboxy-terminus. Gen Comp Endocrinol 152:1–7

    CAS  PubMed  Google Scholar 

  254. Verleyen P, Huybrechts J, Schoofs L (2009) SIFamide illustrates the rapid evolution in arthropod neuropeptide research. Gen Comp Endocrinol 162:27–35

    CAS  PubMed  Google Scholar 

  255. Sullivan JM, Beltz BS (2005) Newborn cells in the adult crayfish brain differentiate into distinct neuronal types. J Neurobiol 65:157–170

    PubMed  Google Scholar 

  256. Christie AE, Kutz-Naber KK, Stemmler EA, Klein A, Messinger DI, Goiney CC, Conterato AJ, Bruns EA, Hsu YW, Dickinson PS (2007) Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly(1)-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus. J Exp Biol 210:699–714

    CAS  PubMed  Google Scholar 

  257. Vazquez-Acevedo N, Rivera Nilsa M, Torres-Gonzalez Alejandra M, Rullan-Matheu Y, Ruiz-Rodriguez Eduardo A, Sosa Maria A (2009) GYRKPPFNGSIFamide (Gly-SIFamide) modulates aggression in the freshwater prawn Macrobrachium rosenbergii. Biol Bull 217:313–326

    PubMed  Google Scholar 

  258. Polanska MA, Yasuda A, Harzsch S (2007) Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish. Cell Tissue Res 330:331–344

    CAS  PubMed  Google Scholar 

  259. Goldberg D, Nusbaum MP, Marder E (1988) Substance P-like immunoreactivity in the stomatogastric nervous systems of the crab Cancer borealis and the lobsters Panulirus interruptus and Homarus americanus. Cell Tissue Res 252:515–522

    CAS  PubMed  Google Scholar 

  260. Langworthy K, Helluy S, Benton J, Beltz B (1997) Amines and peptides in the brain of the American lobster: immunocytochemical localization patterns and implications for brain function. Cell Tissue Res 288:191–206

    CAS  PubMed  Google Scholar 

  261. Sandeman RE, Sandeman DC, Watson AHD (1990) Substance-p antibody reveals homologous neurons with axon terminals among somata in the crayfish and crab brain. J Comp Neurol 294:569–582

    CAS  PubMed  Google Scholar 

  262. Schmidt M (1997) Distribution of presumptive chemosensory afferents with FMRFamide- or substance P-like immunoreactivity in decapod crustaceans. Brain Res 746:71–84

    CAS  PubMed  Google Scholar 

  263. Christie AE, Cashman CR, Stevens JS, Smith CM, Beale KM, Stemmler EA, Greenwood SJ, Towle DW, Dickinson PS (2008) Identification and cardiotropic actions of brain/gut-derived tachykinin-related peptides (TRPs) from the American lobster Homarus americanus. Peptides 29:1909–1918

    CAS  PubMed  Google Scholar 

  264. Wood DE, Stein W, Nusbaum MP (2000) Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit. J Neurosci 20:8943–8953

    CAS  PubMed  Google Scholar 

  265. Blitz DM, White RS, Saideman SR, Cook A, Christie AE, Nadim F, Nusbaum MP (2008) A newly identified extrinsic input triggers a distinct gastric mill rhythm via activation of modulatory projection neurons. J Exp Biol 211:1000–1011

    PubMed  Google Scholar 

  266. Rehm KJ, Taylor AL, Pulver SR, Marder E (2008) Spectral analyses reveal the presence of adult-like activity in the embryonic stomatogastric motor patterns of the lobster, Homarus americanus. J Neurophysiol 99:3104–3122

    PubMed  Google Scholar 

  267. Stein W, DeLong ND, Wood DE, Nusbaum MP (2007) Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron. Eur J Neurosci 26:1148–1165

    PubMed  Google Scholar 

  268. Glantz RM, Miller CS, Nassel DR (2000) Tachykinin-related peptide and GABA-mediated presynaptic inhibition of crayfish photoreceptors. J Neurosci 20:1780–1790

    CAS  PubMed  Google Scholar 

  269. Stafflinger E, Hansen KK, Hauser F, Schneider M, Cazzamali G, Williamson M, Grimmelikhuijzen CJP (2008) Cloning and identification of the first oxytocin/vasopressin-like receptor and its ligand from insects. PNAS 105:3262–3267

    CAS  PubMed  Google Scholar 

  270. Mercier AJ, Russenes RT (1992) Modulation of crayfish hearts by FMRFamide-related peptides. Biol Bull 182:333–340

    CAS  Google Scholar 

  271. Saver MA, Wilkens JL (1998) Comparison of the effects of five hormones on intact and open heart cardiac ganglionic output and myocardial contractility in the shore crab Carcinus maenas. Comp Biochem Physiol A Mol Integr Physiol 120:301–310

    Google Scholar 

  272. Wilkens JL, Mercier AJ (1993) Peptidergic modulation of cardiac performance in isolated hearts from the shore crab Carcinus maenas. Physiol Zool 66:237–256

    CAS  Google Scholar 

  273. Stevens J, Christie A, Dickinson P (2008) Modulation of Homarus americanus cardiac activity by the peptide hormone TNRNFLRFamide. MDIBL Bull 47:82–85

    Google Scholar 

  274. Brezina V, Orekhova IV, Weiss KR (2000) The neuromuscular transform: the dynamic, nonlinear link between motor neuron firing patterns and muscle contraction in rhythmic behaviors. J Neurophysiol 83:207–231

    CAS  PubMed  Google Scholar 

  275. Brezina V, Orekhova IV, Weiss KR (2000) Optimization of rhythmic behaviors by modulation of the neuromuscular transform. J Neurophysiol 83:260–279

    CAS  PubMed  Google Scholar 

  276. Brezina V, Weiss KR (2000) The neuromuscular transform constrains the production of functional rhythmic behaviors. J Neurophysiol 83:232–259

    CAS  PubMed  Google Scholar 

  277. Fort TJ, Brezina V, Miller MW (2004) Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. J Neurophysiol 92:3455–3470

    CAS  PubMed  Google Scholar 

  278. Garcia-Crescioni K, Fort Timothy J, Stern E, Brezina V, Miller Mark W (2010) Feedback from peripheral musculature to central pattern generator in the neurogenic heart of the crab Callinectes sapidus: role of mechanosensitive dendrites. J Neurophysiol 103:83–96

    PubMed  Google Scholar 

  279. Sakurai A, Wilkens JL (2003) Tension sensitivity of the heart pacemaker neurons in the isopod crustacean Ligia pallasii. J Exp Biol 206:105–115

    PubMed  Google Scholar 

  280. Mahadevan A, Lappe J, Rhyne RT, Cruz-Bermudez ND, Marder E, Goy MF (2004) Nitric oxide inhibits the rate and strength of cardiac contractions in the lobster Homarus americanus by acting on the cardiac ganglion. J Neurosci 24:2813–2824

    CAS  PubMed  Google Scholar 

  281. Selverston AI, Russell DF, Miller JP (1976) The stomatogastric nervous system: structure and function of a small neural network. Prog Neurobiol 7:215–290

    CAS  PubMed  Google Scholar 

  282. Blitz DM, Christie AE, Coleman MJ, Norris BJ, Marder E, Nusbaum MP (1999) Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. J Neurosci 19:5449–5463

    CAS  PubMed  Google Scholar 

  283. Norris BJ, Coleman MJ, Nusbaum MP (1994) Recruitment of a projection neuron determines gastric mill motor pattern selection in the stomatogastric nervous system of the crab, Cancer borealis. J Neurophysiol 72:1451–1463

    CAS  PubMed  Google Scholar 

  284. Norris BJ, Coleman MJ, Nusbaum MP (1996) Pyloric motor pattern modification by a newly identified projection neuron in the crab stomatogastric nervous system. J Neurophysiol 75:97–108

    CAS  PubMed  Google Scholar 

  285. Nusbaum MP, Beenhakker MP (2002) A small-systems approach to motor pattern generation. Nature 417:343–350

    CAS  PubMed  Google Scholar 

  286. Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    CAS  PubMed  Google Scholar 

  287. Saideman SR, Blitz DM, Nusbaum MP (2007) Convergent motor patterns from divergent circuits. J Neurosci 27:6664–6674

    CAS  PubMed  Google Scholar 

  288. Golowasch J, Marder E (1992) Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. J Neurosci 12:810–817

    CAS  PubMed  Google Scholar 

  289. Swensen AM, Marder E (2000) Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J Neurosci 20:6752–6759

    CAS  PubMed  Google Scholar 

  290. Swensen AM, Marder E (2001) Modulators with convergent cellular actions elicit distinct circuit outputs. J Neurosci 21:4050–4058

    CAS  PubMed  Google Scholar 

  291. Weimann JM, Meyrand P, Marder E (1991) Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric pyloric neurons in the crab stomatogastric system. J Neurophysiol 65:111–122

    CAS  PubMed  Google Scholar 

  292. Marder E, Thirumalai V (2002) Cellular, synaptic and network effects of neuromodulation. Neural Netw 15:479–493

    PubMed  Google Scholar 

  293. Nusbaum MP (2002) Regulating peptidergic modulation of rhythmically active neural circuits. Brain Behav Evol 60:378–387

    PubMed  Google Scholar 

  294. Stein W (2009) Modulation of stomatogastric rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:989–1009

    PubMed  Google Scholar 

  295. Dickinson PS, Fairfield WP, Hetling JR, Hauptman J (1997) Neurotransmitter interactions in the stomatogastric system of the spiny lobster: one peptide alters the response of a central pattern generator to a second peptide. J Neurophysiol 77:599–610

    CAS  PubMed  Google Scholar 

  296. Combes D, Simmers J, Moulins M (1997) Conditioned dendritic oscillators in a lobster mechanoreceptor neurone. J Physiol Lond 499:161–177

    CAS  PubMed  Google Scholar 

  297. Birmingham JT, Billimoria CP, DeKlotz TR, Stewart RA, Marder E (2003) Differential and history-dependent modulation of a stretch receptor in the stomatogastric system of the crab, Cancer borealis. J Neurophysiol 90:3608–3616

    CAS  PubMed  Google Scholar 

  298. Billimoria CP, DiCaprio RA, Birmingham JT, Abbott LF, Marder E (2006) Neuromodulation of spike-timing precision in sensory neurons. J Neurosci 26:5910–5919

    CAS  PubMed  Google Scholar 

  299. Nusbaum MP, Marder E (1989) A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J Neurosci 9:1600–1607

    CAS  PubMed  Google Scholar 

  300. Nusbaum MP, Marder E (1989) A modulatory proctolin-containing neuron (MPN). I. Identification and characterization. J Neurosci 9:1591–1599

    CAS  PubMed  Google Scholar 

  301. Mizrahi A, Dickinson PS, Kloppenburg P, Fenelon V, Baro DJ, Harris-Warrick RM, Meyrand P, Simmers J (2001) Long-term maintenance of channel distribution in a central pattern generator neuron by neuromodulatory inputs revealed by decentralization in organ culture. J Neurosci 21:7331–7339

    CAS  PubMed  Google Scholar 

  302. Thoby-Brisson M, Simmers J (1998) Neuromodulatory inputs maintain expression of a lobster motor pattern-generating network in a modulation-dependent state: evidence from long-term decentralization in vitro. J Neurosci 18:2212–2225

    CAS  PubMed  Google Scholar 

  303. Thoby-Brisson M, Simmers J (2000) Transition to endogenous bursting after long-term decentralization requires de novo transcription in a critical time window. J Neurophysiol 84:596–599

    CAS  PubMed  Google Scholar 

  304. Haedo RJ, Golowasch J (2006) Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons. J Neurophysiol 96:1860–1876

    CAS  PubMed  Google Scholar 

  305. Luther JA, Robie AA, Yarotsky J, Reina C, Marder E, Golowasch J (2003) Episodic bouts of activity accompany recovery of rhythmic output by a neuromodulator- and activity-deprived adult neural network. J Neurophysiol 90:2720–2730

    PubMed  Google Scholar 

  306. Khorkova O, Golowasch J (2007) Neuromodulators, not activity, control coordinated expression of ionic currents. J Neurosci 27:8709–8718

    CAS  PubMed  Google Scholar 

  307. Zhang Y, Khorkova O, Rodriguez R, Golowaschi J (2009) Activity and neuromodulatory input contribute to the recovery of rhythmic output after decentralization in a central pattern generator. J Neurophysiol 101:372–386

    PubMed  Google Scholar 

  308. Marder E, Richards KS (1999) Development of the peptidergic modulation of a rhythmic pattern generating network. Brain Res 848:35–44

    CAS  PubMed  Google Scholar 

  309. Richards KS, Simon DJ, Pulver SR, Beltz BS, Marder E (2003) Serotonin in the developing stomatogastric system of the lobster, Homarus americanus. J Neurobiol 54:380–392

    CAS  PubMed  Google Scholar 

  310. Le Feuvre Y, Fenelon VS, Meyrand P (1999) Central inputs mask multiple adult neural networks within a single embryonic network. Nature 402:660–664

    CAS  PubMed  Google Scholar 

  311. Casasnovas B, Fenelon VS, Meyrand P (1999) Ontogeny of rhythmic motor networks in the stomatogastric nervous system. J Comp Physiol A Sens Neural Behav Physiol 185:361–365

    Google Scholar 

  312. Fenelon V, Le Feuvre Y, Bem T, Meyrand P (2003) Maturation of rhythmic neural network: role of central modulatory inputs. J Physiol Paris 97:59–68

    PubMed  Google Scholar 

  313. Fenelon VS, Feuvre Y, Meyrand P (2004) Phylogenetic, ontogenetic and adult adaptive plasticity of rhythmic neural networks: a common neuromodulatory mechanism? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:691–705

    CAS  PubMed  Google Scholar 

  314. Clemens S, Massabuau JC, Meyrand P, Simmers J (1999) Changes in motor network expression related to moulting behaviour in lobster: role of moult-induced deep hypoxia. J Exp Biol 202:817–827

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported through institutional funds provided by Mount Desert Island Biological Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Christie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christie, A.E., Stemmler, E.A. & Dickinson, P.S. Crustacean neuropeptides. Cell. Mol. Life Sci. 67, 4135–4169 (2010). https://doi.org/10.1007/s00018-010-0482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0482-8

Keywords

Navigation