Skip to main content
Log in

Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lobster, Homarus americanus

  • Original Article
  • Published:
Invertebrate Neuroscience

Abstract

The American lobster, Homarus americanus, is a model for investigating the neuromodulatory control of physiology and behavior. Prior studies have shown that multiple classes of chemicals serve as locally released/circulating neuromodulators/neurotransmitters in this species. Interestingly, while many neuroactive compounds are known from Homarus, little work has focused on identifying/characterizing the enzymes responsible for their biosynthesis, despite the fact that these enzymes are key components for regulating neuromodulation/neurotransmission. Here, an eyestalk ganglia-specific transcriptome was mined for transcripts encoding enzymes involved in neuropeptide, amine, diffusible gas and small molecule transmitter biosynthesis. Using known Drosophila melanogaster proteins as templates, transcripts encoding putative Homarus homologs of peptide precursor processing (signal peptide peptidase, prohormone processing protease and carboxypeptidase) and immature peptide modifying (glutaminyl cyclase, tyrosylprotein sulfotransferase, protein disulfide isomerase, peptidylglycine-α-hydroxylating monooxygenase and peptidyl-α-hydroxyglycine-α-amidating lyase) enzymes were identified in the eyestalk assembly. Similarly, transcripts encoding full complements of the enzymes responsible for dopamine [tryptophan-phenylalanine hydroxylase (TPH), tyrosine hydroxylase and DOPA decarboxylase (DDC)], octopamine (TPH, tyrosine decarboxylase and tyramine β-hydroxylase), serotonin (TPH or tryptophan hydroxylase and DDC) and histamine (histidine decarboxylase) biosynthesis were identified from the eyestalk ganglia, as were those responsible for the generation of the gases nitric oxide (nitric oxide synthase) and carbon monoxide (heme oxygenase), and the small molecule transmitters acetylcholine (choline acetyltransferase), glutamate (glutaminase) and GABA (glutamic acid decarboxylase). The presence and identity of the transcriptome-derived transcripts were confirmed using RT-PCR. The data presented here provide a foundation for future gene-based studies of neuromodulatory control at the level of neurotransmitter/modulator biosynthesis in Homarus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Sidén-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT WK, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    PubMed  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballo AW, Bucher D (2009) Complex intrinsic membrane properties and dopamine shape spiking activity in a motor axon. J Neurosci 29:5062–5074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballo AW, Nadim F, Bucher D (2012) Dopamine modulation of Ih improves temporal fidelity of spike propagation in an unmyelinated axon. J Neurosci 32:5106–5119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barañano DE, Snyder SH (2001) Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc Natl Acad Sci USA 98:10996–11002

    PubMed  Google Scholar 

  • Barañano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    PubMed  Google Scholar 

  • Beltz B, Eisen JS, Flamm R, Harris-Warrick RM, Hooper SL, Marder E (1984) Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Panulirus interruptus, Homarus americanus and Cancer irroratus). J Exp Biol 109:35–54

    CAS  PubMed  Google Scholar 

  • Benton JL, Sandeman DC, Beltz BS (2007) Nitric oxide in the crustacean brain: regulation of neurogenesis and morphogenesis in the developing olfactory pathway. Dev Dyn 236:3047–3060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benton JL, Goergen EM, Rogan SC, Beltz BS (2008) Hormonal and synaptic influences of serotonin on adult neurogenesis. Gen Comp Endocrinol 158:183–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blitz DM, Nusbaum MP (2011) Neural circuit flexibility in a small sensorimotor system. Curr Opin Neurobiol 21:544–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Böcking D, Dircksen H, Keller R (2002) The crustacean neuropeptide of the CHH/MIH/GIH family: structures and biological activities. In: Wiese K (ed) The crustacean nervous system. Springer, Heidelberg, pp 84–97

    Google Scholar 

  • Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    CAS  PubMed  Google Scholar 

  • Bucher D, Thirumalai V, Marder E (2003) Axonal dopamine receptors activate peripheral spike initiation in a stomatogastric motor neuron. J Neurosci 23:6866–6875

    CAS  PubMed  Google Scholar 

  • Cao J, Wu L, Jin M, Li T, Hui K, Ren Q (2017) Transcriptome profiling of the Macrobrachium rosenbergii lymphoid organ under the white spot syndrome virus challenge. Fish Shellfish Immunol 67:27–39

    CAS  PubMed  Google Scholar 

  • Casso DJ, Tanda S, Biehs B, Martoglio B, Kornberg TB (2005) Drosophila signal peptide peptidase is an essential protease for larval development. Genetics 170:139–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie AE (2011) Crustacean neuroendocrine systems and their signaling agents. Cell Tissue Res 345:41–67

    CAS  PubMed  Google Scholar 

  • Christie AE, Edwards JM, Cherny E, Clason TA, Graubard K (2003) Immunocytochemical evidence for nitric oxide- and carbon monoxide-producing neurons in the stomatogastric nervous system of the crayfish Cherax quadricarinatus. J Comp Neurol 467:293–306

    CAS  PubMed  Google Scholar 

  • Christie AE, Stemmler EA, Dickinson PS (2010) Crustacean neuropeptides. Cell Mol Life Sci 67:4135–4169

    CAS  PubMed  Google Scholar 

  • Christie AE, Fontanilla TM, Roncalli V, Cieslak MC, Lenz PH (2014a) Identification and developmental expression of the enzymes responsible for dopamine, histamine, octopamine and serotonin biosynthesis in the copepod crustacean Calanus finmarchicus. Gen Comp Endocrinol 195:28–39

    CAS  PubMed  Google Scholar 

  • Christie AE, Fontanilla TM, Roncalli V, Cieslak MC, Lenz PH (2014b) Diffusible gas transmitter signaling in the copepod crustacean Calanus finmarchicus: identification of the biosynthetic enzymes of nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) using a de novo assembled transcriptome. Gen Comp Endocrinol 202:76–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie AE, Chi M, Lameyer TJ, Pascual MG, Shea DN, Stanhope ME, Schulz DJ, Dickinson PS (2015) Neuropeptidergic signaling in the American lobster Homarus americanus: new insights from high-throughput nucleotide sequencing. PLoS ONE 10:e0145964

    PubMed  PubMed Central  Google Scholar 

  • Christie AE, Roncalli V, Cieslak MC, Pascual MG, Yu A, Lameyer TJ, Stanhope ME, Dickinson PS (2017) Prediction of a neuropeptidome for the eyestalk ganglia of the lobster Homarus americanus using a tissue-specific de novo assembled transcriptome. Gen Comp Endocrinol 243:96–119

    CAS  PubMed  Google Scholar 

  • Christie AE, Yu A, Pascual MG, Roncalli V, Cieslak MC, Warner AN, Lameyer TJ, Stanhope ME, Dickinson PS, Hull JJ (2018a) Circadian signaling in Homarus americanus: region-specific de novo assembled transcriptomes show that both the brain and eyestalk ganglia possess the molecular components of a putative clock system. Mar Genom 40:25–44

    Google Scholar 

  • Christie AE, Yu A, Roncalli V, Pascual MG, Cieslak MC, Warner AN, Lameyer TJ, Stanhope ME, Dickinson PS, Joe Hull J (2018) Molecular evidence for an intrinsic circadian pacemaker in the cardiac ganglion of the American lobster, Homarus americanus—is diel cycling of heartbeat frequency controlled by a peripheral clock system? Mar Genom. https://doi.org/10.1016/j.margen.2018.07.001

    Article  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Cáceres CE, Carmel L, Casola C, Choi JH, Detter JC, Dong Q, Dusheyko S, Eads BD, Fröhlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kültz D, Laforsch C, Lindquist E, Lopez J, Manak JR, Muller J, Pangilinan J, Patwardhan RP, Pitluck S, Pritham EJ, Rechtsteiner A, Rho M, Rogozin IB, Sakarya O, Salamov A, Schaack S, Shapiro H, Shiga Y, Skalitzky C, Smith Z, Souvorov A, Sung W, Tang Z, Tsuchiya D, Tu H, Vos H, Wang M, Wolf YI, Yamagata H, Yamada T, Ye Y, Shaw JR, Andrews J, Crease TJ, Tang H, Lucas SM, Robertson HM, Bork P, Koonin EV, Zdobnov EM, Grigoriev IV, Lynch M, Boore JL (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman CM, Neckameyer WS (2004) Substrate regulation of serotonin and dopamine synthesis in Drosophila. Invert Neurosci 5:85–96

    CAS  PubMed  Google Scholar 

  • Coleman CM, Neckameyer WS (2005) Serotonin synthesis by two distinct enzymes in Drosophila melanogaster. Arch Insect Biochem Physiol 59:12–31

    CAS  PubMed  Google Scholar 

  • Cooke IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136

    PubMed  Google Scholar 

  • Cournil I, Meyrand P, Moulins M (1990) Identification of all GABA-immunoreactive neurons projecting to the lobster stomatogastric ganglion. J Neurocytol 19:478–493

    CAS  PubMed  Google Scholar 

  • Cropper EC, Jing J, Perkins MH, Weiss KR (2017) Use of the Aplysia feeding network to study repetition priming of an episodic behavior. J Neurophysiol 118:1861–1870

    PubMed  PubMed Central  Google Scholar 

  • Daghfous G, Green WW, Alford ST, Zielinski BS, Dubuc R (2016) Sensory activation of command cells for locomotion and modulatory mechanisms: lessons from lampreys. Front Neural Circuits 10:18

    PubMed  PubMed Central  Google Scholar 

  • Dickinson PS, Qu X, Stanhope ME (2016) Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches. Curr Opin Neurobiol 41:149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ducret E, Le Feuvre Y, Meyrand P, Fénelon VS (2007) Removal of GABA within adult modulatory systems alters electrical coupling and allows expression of an embryonic-like network. J Neurosci 27:3626–3638

    CAS  PubMed  Google Scholar 

  • Faddeeva-Vakhrusheva A, Derks MF, Anvar SY, Agamennone V, Suring W, Smit S, van Straalen NM, Roelofs D (2016) Gene family evolution reflects adaptation to soil environmental stressors in the genome of the collembolan Orchesella cincta. Genome Biol Evol 8:2106–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fénelon V, Le Feuvre Y, Bem T, Meyrand P (2003) Maturation of rhythmic neural network: role of central modulatory inputs. J Physiol Paris 97:59–68

    PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gramates LS, Marygold SJ, Santos GD, Urbano JM, Antonazzo G, Matthews BB, Rey AJ, Tabone CJ, Crosby MA, Emmert DB, Falls K, Goodman JL, Hu Y, Ponting L, Schroeder AJ, Strelets VB, Thurmond J, Zhou P, the FlyBase Consortium (2017) FlyBase at 25: looking to the future. Nucleic Acids Res 45:D663–D671

    CAS  PubMed  Google Scholar 

  • Gu X, Fu H, Sun S, Qiao H, Zhang W, Jiang S, Xiong Y, Jin S, Gong Y, Wu Y (2017) Dietary cholesterol-induced transcriptome differences in the intestine, hepatopancreas, and muscle of Oriental River prawn Macrobrachium nipponense. Comp Biochem Physiol Part D Genomics Proteom 23:39–48

    CAS  Google Scholar 

  • Gutovitz S, Birmingham JT, Luther JA, Simon DJ, Marder E (2001) GABA enhances transmission at an excitatory glutamatergic synapse. J Neurosci 21:5935–5943

    CAS  PubMed  Google Scholar 

  • Han M, Park D, Vanderzalm PJ, Mains RE, Eipper BA, Taghert PH (2004) Drosophila uses two distinct neuropeptide amidating enzymes, dPAL1 and dPAL2. J Neurochem 90:129–141

    CAS  PubMed  Google Scholar 

  • Harris-Warrick RM (2011) Neuromodulation and flexibility in Central Pattern Generator networks. Curr Opin Neurobiol 21:685–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris-Warrick RM, Marder E, Selverston AI, Moulins M (1992) Dynamic biological networks: the stomatogastric nervous system. MIT press, Cambridge

    Google Scholar 

  • Heinrich R, Bräunig P, Walter I, Schneider H, Kravitz EA (2000) Aminergic neuron systems of lobsters: morphology and electrophysiology of octopamine-containing neurosecretory cells. J Comp Physiol A 186:617–629

    CAS  PubMed  Google Scholar 

  • Hooper SL, DiCaprio RA (2004) Crustacean motor pattern generator networks. Neurosignals 13:50–69

    CAS  PubMed  Google Scholar 

  • Itoh N, Slemmon JR, Hawke DH, Williamson R, Morita E, Itakura K, Roberts E, Shively JE, Crawford GD, Salvaterra PM (1986) Cloning of Drosophila choline acetyltransferase cDNA. Proc Natl Acad Sci USA 83:4081–4085

    CAS  PubMed  Google Scholar 

  • Jezzini SH, Reyes-Colón D, Sosa MA (2014) Characterization of a prawn OA/TA receptor in Xenopus oocytes suggests functional selectivity between octopamine and tyramine. PLoS ONE 9:e111314

    PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katz PS (2016) Evolution of central pattern generators and rhythmic behaviours. Philos Trans R Soc Lond B Biol Sci 371:20150057

    PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed  PubMed Central  Google Scholar 

  • Kolhekar AS, Roberts MS, Jiang N, Johnson RC, Mains RE, Eipper BA, Taghert PH (1997) Neuropeptide amidation in Drosophila: separate genes encode the two enzymes catalyzing amidation. J Neurosci 17:1363–1376

    CAS  PubMed  Google Scholar 

  • Kwiatkowski MA, Gabranski ER, Huber KE, Chapline MC, Christie AE, Dickinson PS (2013) Coordination of distinct but interacting rhythmic motor programs by a modulatory projection neuron using different co-transmitters in different ganglia. J Exp Biol 216:1827–1836

    PubMed  PubMed Central  Google Scholar 

  • Le Feuvre Y, Fenelon VS, Meyrand P (2001) Ontogeny of modulatory inputs to motor networks: early established projection and progressive neurotransmitter acquisition. J Neurosci 21:1313–1326

    PubMed  Google Scholar 

  • LeBeau FE, El Manira A, Griller S (2005) Tuning the network: modulation of neuronal microcircuits in the spinal cord and hippocampus. Trends Neurosci 28:552–561

    CAS  PubMed  Google Scholar 

  • Li GL, Qian H (2017) Transcriptome using Illumina sequencing reveals the traits of spermatogenesis and developing testes in Eriocheir sinensis. PLoS ONE 12:e0172478

    PubMed  PubMed Central  Google Scholar 

  • Lu X, Kong J, Luan S, Dai P, Meng X, Cao B, Luo K (2016) Transcriptome analysis of the hepatopancreas in the Pacific White Shrimp (Litopenaeus vannamei) under acute ammonia stress. PLoS ONE 11:e0164396

    PubMed  PubMed Central  Google Scholar 

  • Lv J, Zhang L, Liu P, Li J (2017) Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus. PLoS ONE 12:e0175315

    PubMed  PubMed Central  Google Scholar 

  • Ma PM, Beltz BS, Kravitz EA (1992) Serotonin-containing neurons in lobsters: their role as gain-setters in postural control mechanisms. J Neurophysiol 68:36–54

    CAS  PubMed  Google Scholar 

  • Ma M, Chen R, Sousa GL, Bors EK, Kwiatkowski MA, Goiney CC, Goy MF, Christie AE, Li L (2008) Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. Gen Comp Endocrinol 156:395–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadevan A, Lappé J, Rhyne RT, Cruz-Bermúdez ND, Marder E, Goy MF (2004) Nitric oxide inhibits the rate and strength of cardiac contractions in the lobster Homarus americanus by acting on the cardiac ganglion. J Neurosci 24:2813–2824

    CAS  PubMed  Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    CAS  PubMed  Google Scholar 

  • Marder E, Christie AE, Kilman VL (1995) Functional organization of cotransmission systems: lessons from small nervous systems. Invert Neurosci 1:105–112

    CAS  PubMed  Google Scholar 

  • Márquez J, Matés JM, Campos-Sandoval JA (2016) Glutaminases. Adv Neurobiol 13:133–171

    PubMed  Google Scholar 

  • Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60:395–407

    CAS  PubMed  Google Scholar 

  • McBride WJ, Freeman AR, Graham LT Jr, Aprison MH (1975) Content of amino acids in axons from the CNS of the lobster. J Neurobiol 6:321–328

    CAS  PubMed  Google Scholar 

  • McCoole MD, Baer KN, Christie AE (2011) Histaminergic signaling in the central nervous system of Daphnia and a role for it in the control of phototactic behavior. J Exp Biol 214:1773–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCoole MD, Atkinson NJ, Graham DI, Grasser EB, Joselow AL, McCall NM, Welker AM, Wilsterman EJ Jr, Baer KN, Tilden AR, Christie AE (2012a) Genomic analyses of aminergic signaling systems (dopamine, octopamine and serotonin) in Daphnia pulex. Comp Biochem Physiol Part D Genom Proteom 7:35–58

    CAS  Google Scholar 

  • McCoole MD, D’Andrea BT, Baer KN, Christie AE (2012b) Genomic analyses of gas (nitric oxide and carbon monoxide) and small molecule transmitter (acetylcholine, glutamate and GABA) signaling systems in Daphnia pulex. Comp Biochem Physiol Part D Genom Proteom 7:124–160

    CAS  Google Scholar 

  • Monastirioti M (1999) Biogenic amine systems in the fruit fly Drosophila melanogaster. Microsc Res Tech 45:106–121

    CAS  PubMed  Google Scholar 

  • Moore KL (2003) The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem 278:24243–24246

    CAS  PubMed  Google Scholar 

  • Mulloney B, Hall WM (1991) Neurons with histamine-like immunoreactivity in the segmental and stomatogastric nervous systems of the crayfish Pacifastacus leniusculus and the lobster Homarus americanus. Cell Tissue Res 266:197–207

    CAS  PubMed  Google Scholar 

  • Mustafa AK, Gadalla MM, Snyder SH (2009) Signaling by gasotransmitters. Sci Signal 2:re2

    PubMed  PubMed Central  Google Scholar 

  • Nässel DR, Winther AM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92:42–104

    PubMed  Google Scholar 

  • Neckameyer WS, Quinn WG (1989) Isolation and characterization of the gene for Drosophila tyrosine hydroxylase. Neuron 2:1167–1175

    CAS  PubMed  Google Scholar 

  • Newkirk RF, Ballou EW, Vickers G, Whittaker VP (1976) Comparative studies in synaptosome formation: preparation of synaptosomes from the ventral nerve cord of the lobster (Homarus americanus). Brain Res 101:103–111

    CAS  PubMed  Google Scholar 

  • Northcutt AJ, Lett KM, Garcia VB, Diester CM, Lane BJ, Marder E, Schulz DJ (2016) Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation. BMC Genom 17:868

    Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    CAS  PubMed  Google Scholar 

  • Perina A, González-Tizón AM, Meilán IF, Martínez-Lage A (2016) De novo transcriptome assembly of shrimp Palaemon serratus. Genom Data 11:89–91

    PubMed  PubMed Central  Google Scholar 

  • Phillips AM, Smart R, Strauss R, Brembs B, Kelly LE (2005) The Drosophila black enigma: the molecular and behavioural characterization of the black1 mutant allele. Gene 351:131–142

    CAS  PubMed  Google Scholar 

  • Pulver SR, Thirumalai V, Richards KS, Marder E (2003) Dopamine and histamine in the developing stomatogastric system of the lobster Homarus americanus. J Comp Neurol 462:400–414

    CAS  PubMed  Google Scholar 

  • Rodríguez-Ramos T, Carpio Y, Bolívar J, Espinosa G, Hernández-López J, Gollas-Galván T, Ramos L, Pendón C, Estrada MP (2010) An inducible nitric oxide synthase (NOS) is expressed in hemocytes of the spiny lobster Panulirus argus: cloning, characterization and expression analysis. Fish Shellfish Immunol 29:469–479

    PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Ruiz-Vázquez P, Moulard M, Silva FJ (1996) Structure of the phenylalanine hydroxylase gene in Drosophila melanogaster and evidence of alternative promoter usage. Biochem Biophys Res Commun 225:238–242

    PubMed  Google Scholar 

  • Schneider H, Trimmer BA, Rapus J, Eckert M, Valentine DE, Kravitz EA (1993) Mapping of octopamine-immunoreactive neurons in the central nervous system of the lobster. J Comp Neurol 329:129–142

    CAS  PubMed  Google Scholar 

  • Schneider H, Budhiraja P, Walter I, Beltz BS, Peckol E, Kravitz EA (1996) Developmental expression of the octopamine phenotype in lobsters, Homarus americanus. J Comp Neurol 371:3–14

    CAS  PubMed  Google Scholar 

  • Scholz NL, Chang ES, Graubard K, Truman JW (1998) The NO/cGMP pathway and the development of neural networks in postembryonic lobsters. J Neurobiol 34:208–226

    CAS  PubMed  Google Scholar 

  • Selverston AI (2005) A neural infrastructure for rhythmic motor patterns. Cell Mol Neurobiol 25:223–244

    PubMed  Google Scholar 

  • Selverston AI, Ayers J (2006) Oscillations and oscillatory behavior in small neural circuits. Biol Cybern 95:537–554

    PubMed  Google Scholar 

  • Selverston AI, Moulins M (1987) The Crustacean stomatogastric system. Springer, Berlin, Heidelberg

    Google Scholar 

  • Selverston A, Elson R, Rabinovich M, Huerta R, Abarbanel H (1998) Basic principles for generating motor output in the stomatogastric ganglion. Ann NY Acad Sci 860:35–50

    CAS  PubMed  Google Scholar 

  • Siekhaus DE, Fuller RS (1999) A role for amontillado, the Drosophila homolog of the neuropeptide precursor processing protease PC2, in triggering hatching behavior. J Neurosci 19:6942–6954

    CAS  PubMed  Google Scholar 

  • Skiebe P (2001) Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. J Exp Biol 204:2035–2048

    CAS  PubMed  Google Scholar 

  • Stein W (2009) Modulation of stomatogastric rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:989–1009

    PubMed  Google Scholar 

  • Stepanyan R, Day K, Urban J, Hardin DL, Shetty RS, Derby CD, Ache BW, McClintock TS (2006) Gene expression and specificity in the mature zone of the lobster olfactory organ. Physiol Genom 25:224–233

    CAS  Google Scholar 

  • Stuart AE (1999) From fruit flies to barnacles, histamine is the neurotransmitter of arthropod photoreceptors. Neuron 22:431–433

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toullec JY, Corre E, Mandon P, Gonzalez-Aravena M, Ollivaux C, Lee CY (2017) Characterization of the neuropeptidome of a Southern Ocean decapod, the Antarctic shrimp Chorismus antarcticus: focusing on a new decapod ITP-like peptide belonging to the CHH peptide family. Gen Comp Endocrinol 252:60–78

    CAS  PubMed  Google Scholar 

  • Towle DW, Smith CM (2006) Gene discovery in Carcinus maenas and Homarus americanus via expressed sequence tags. Integr Comp Biol 46:912–918

    CAS  PubMed  Google Scholar 

  • Waiho K, Fazhan H, Shahreza MS, Moh JH, Noorbaiduri S, Wong LL, Sinnasamy S, Ikhwanuddin M (2017) Transcriptome analysis and differential gene expression on the testis of orange mud crab, Scylla olivacea, during sexual maturation. PLoS ONE 12:e0171095

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Newton DC, Marsden PA (1999) Neuronal NOS: gene structure, mRNA diversity, and functional relevance. Crit Rev Neurobiol 13:21–43

    PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Science Foundation (IOS-1353023 and IOS-1354567), the National Institutes of Health (5P20RR016463-12 and 8P20GM103423-12), base CRIS funding (Project #2020-22620-022-00D), the Arnold and Mabel Beckman Foundation, the Cades Foundation of Honolulu, Hawaii, and a gift from the Henry L. and Grace Doherty Charitable Foundation to Bowdoin College. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Christie.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Amino acid sequences of putative neuromodulator biosynthetic enzymes deduced from Homarus americanus eyestalk ganglia-specific transcripts. (A) Homarus americanus signal peptide peptidase (Homam-SPP). (B) Homarus americanus prohormone processing protease (Homam-PPP). (C) Homarus americanus carboxypeptidase (Homam-CP). (D) Homarus americanus glutaminyl cyclase (Homam-QC). (E) Homarus americanus tyrosylprotein sulfotransferase (Homam-TPST). (F1-2) Homarus americanus protein disulfide isomerase (Homam-PDI) variants. (G) Homarus americanus peptidylglycine α-hydroxylating monooxygenase (Homam-PHM). (H1-3) Homarus americanus peptidyl-α-hydroxyglycine-α-amidating lyase (Homam-PAL) proteins and variants. (I1-4) Homarus americanus tryptophan-phenylalanine hydroxylase (Homam-TPH) variants. (J) Homarus americanus tyrosine hydroxylase (Homam-TH). (K) Homarus americanus DOPA decarboxylase (Homam-DDC). (L) Homarus americanus tyrosine decarboxylase (Homam-TDC). (M) Homarus americanus tyramine β-hydroxylase (Homam-TBH). (N) Homarus americanus tryptophan hydroxylase (Homam-TRH). (O1-2) Homarus americanus histidine decarboxylase (Homam-HDC) partial proteins. (P1-5) Homarus americanus nitric oxide synthase (Homam-NOS) variants. (Q1-2) Homarus americanus heme oxygenase (Homam-HO) variants. (R) Homarus americanus choline acetyltransferase (Homam-CHAT). (S1-6) Homarus americanus glutaminase (Homam-GLS) proteins and variants. (T1-2) Homarus americanus glutamic acid decarboxylase (Homam-GAD) proteins. A “+” symbol on the amino- or carboxyl-terminus indicates the presence of additional unknown amino acids (DOC 73 kb)

Online Resource 2

Table of oligonucleotide primers used for RT-PCR (XLSX 11 kb)

Online Resource 3

Table of amino acid sequences used for phylogenetic analysis of hydroxylases (XLSX 61 kb)

Online Resource 4

Table of amino acid sequences used for phylogenetic analysis of decarboxylases (XLSX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christie, A.E., Stanhope, M.E., Gandler, H.I. et al. Molecular characterization of putative neuropeptide, amine, diffusible gas and small molecule transmitter biosynthetic enzymes in the eyestalk ganglia of the American lobster, Homarus americanus. Invert Neurosci 18, 12 (2018). https://doi.org/10.1007/s10158-018-0216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-018-0216-4

Keywords

Navigation