Skip to main content
Log in

Adsorption and dehydration of ethanol on isomorphously B, Al, and Ga substituted H-ZSM-5 zeolite: an embedded ONIOM study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Dehydration reactions are important in the petroleum and petrochemical industries, especially for the feedstock production. In this work, the catalytic activity of zeolites with different acidities for the dehydration of ethanol to ethylene and diethylether is investigated by density functional calculations on cluster models of three isomorphous B, Al, and Ga substituted H-ZSM-5 zeolites. Both unimolecular and bimolecular mechanisms are investigated. Detailed reaction profiles for the dehydration reaction, assuming either a stepwise or a concerted mechanism, were calculated by using the ONIOM(MP2:M06-2X) + SCREEP method. The adsorption energies of ethanol are −21.6, −28.1, and −27.7 kcal mol−1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The activation energies for the rate-determining step of the unimolecular concerted mechanism for the ethylene formation are 48.5, 42.6, and 43.6 kcal mol−1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The activation energies for the ethoxy formation as the rate-determining step for the bimolecular formation of diethylether are 42.3, 40.0, and 41.1 kcal mol−1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The results indicate that the catalytic activities for the dehydration of ethanol decrease in the order H-[Al]-ZSM-5 ~ H-[Ga]-ZSM-5 > H-[B]-ZSM-5. Besides the acid strength, the zeolite framework affects the reaction by stabilizing the reaction intermediates, leading to more stable adsorption complexes and lower activation barriers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

N/A.

Code availability

N/A.

References

  1. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216:298–312. https://doi.org/10.1016/S0021-9517(02)00132-X

    Article  CAS  Google Scholar 

  2. Smit B, Maesen TLM (2008) Towards a molecular understanding of shape selectivity. Nature 451:671–678. https://doi.org/10.1038/nature06552

    Article  CAS  PubMed  Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

    Article  CAS  PubMed  Google Scholar 

  4. Bhan A, Iglesia E (2008) A link between reactivity and local structure in acid catalysis on zeolites. Acc Chem Res 41:559–567. https://doi.org/10.1021/ar700181t

    Article  CAS  PubMed  Google Scholar 

  5. Fan D, Dai DJ, Wu HS (2013) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6:101–115. https://doi.org/10.3390/ma6010101

    Article  CAS  Google Scholar 

  6. Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84. https://doi.org/10.1080/15583720902834791

    Article  CAS  Google Scholar 

  7. Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105:249–252. https://doi.org/10.1007/s10562-005-8698-1

    Article  CAS  Google Scholar 

  8. Tret’yakov VF, Makarfi YI, Tret’yakov KV, Frantsuzova NA, Talyshinskii RM (2010) The catalytic conversion of bioethanol to hydrocarbon fuel: a review and study. Catal Ind 2:402–420. https://doi.org/10.1134/S2070050410040161

    Article  Google Scholar 

  9. Straathof AJJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114:1871–1908. https://doi.org/10.1021/cr400309c

    Article  CAS  PubMed  Google Scholar 

  10. Haw JF, Xu T (1998) NMR studies of solid acidity. Adv Catal 42:115–180. https://doi.org/10.1016/S0360-0564(08)60628-8

    Article  CAS  Google Scholar 

  11. Lamberti C, Groppo E, Spoto G, Bordiga S, Zecchina A (2007) Infrared spectroscopy of transient surface species. Adv Catal 51:1–74. https://doi.org/10.1016/S0360-0564(06)51001-6

    Article  CAS  Google Scholar 

  12. Wang W, Seiler M, Hunger M (2001) Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy. J Phys Chem B 105:12553–12558. https://doi.org/10.1021/jp0129784

    Article  CAS  Google Scholar 

  13. Batchu R, Galvita VV, Alexopoulos K, Glazneva TS, Poelman H, Reyniers MF, Marin GB (2020) Ethanol dehydration pathways in H-ZSM-5: insights from temporal analysis of products. Catal Today 355:822–831. https://doi.org/10.1016/j.cattod.2019.04.018

    Article  CAS  Google Scholar 

  14. Wang Z, O’Dell LA, Zeng X, Liu C, Zhao S, Zhang W, Gaborieau M, Jiang Y, Huang J (2019) Insight into three-coordinate aluminum species on ethanol-to-olefin conversion over ZSM-5 zeolites. Angew Chem Int Ed 58:18061–18068. https://doi.org/10.1002/anie.201910987

    Article  CAS  Google Scholar 

  15. Wu CY, Wu HS (2017) Ethylene formation from ethanol dehydration using ZSM-5 catalyst. ACS Omega 2:4287–4296. https://doi.org/10.1021/acsomega.7b00680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bukowski BC, Bates JS, Gounder R, Greeley J (2018) First principles, microkinetic, and experimental analysis of Lewis acid site speciation during ethanol dehydration on Sn-beta zeolites. J Catal 365:261–276. https://doi.org/10.1016/j.jcat.2018.07.012

    Article  CAS  Google Scholar 

  17. Sarve DT, Singh SK, Ekhe JD (2020) Kinetic and mechanistic study of ethanol dehydration to diethyl ether over Ni-ZSM-5 in a closed batch reactor. React Kinet Mech Catal 131:261–281. https://doi.org/10.1007/s11144-020-01847-z

    Article  CAS  Google Scholar 

  18. Kondo JN, Nishioka D, Yamazaki H, Kubota J, Domen K, Tatsumi T (2010) Activation energies for the reaction of ethoxy species to ethene over zeolites. J Phys Chem C 114:20107–20113. https://doi.org/10.1021/jp107082t

    Article  CAS  Google Scholar 

  19. Kondo JN, Ito K, Yoda E, Wakabayashi F, Domen K (2005) An ethoxy intermediate in ethanol dehydration on Brønsted acid sites in zeolite. J Phys Chem B 109:10969–10972. https://doi.org/10.1021/jp050721q

    Article  CAS  PubMed  Google Scholar 

  20. Kunz LY, Bu L, Knott BC, Liu C, Nimlos MR, Assary RS, Curtiss LA, Robichaud DJ, Kim S (2019) Theoretical determination of size effects in zeolite-catalyzed alcohol dehydration. Catalysts 9:700. https://doi.org/10.3390/catal9090700

    Article  CAS  Google Scholar 

  21. Costa RJ, Castro EAS, Politi JRS, Gargano R, Martins JBL (2019) Methanol, ethanol, propanol, and butanol adsorption on H-ZSM-5 zeolite: an ONIOM study. J Mol Model 25:34. https://doi.org/10.1007/s00894-018-3894-2

    Article  CAS  PubMed  Google Scholar 

  22. Lee CC, Gorte RJ, Farneth WE (1997) Calorimetric study of alcohol and nitrile adsorption complexes in H-ZSM-5. J Phys Chem B 101:3811–3817. https://doi.org/10.1021/jp970711s

    Article  CAS  Google Scholar 

  23. Kim S, Robichaud DJ, Beckham GT, Paton RS, Nimlos MR (2015) Ethanol dehydration in HZSM-5 studied by density functional theory: evidence for a concerted process. J Phys Chem A 119:3604–3614. https://doi.org/10.1021/jp513024z

    Article  CAS  PubMed  Google Scholar 

  24. Alexopoulos K, John M, Van Der Borght K, Galvita V, Reyniers MF, Marin GB (2016) DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5. J Catal 339:173–185. https://doi.org/10.1016/j.jcat.2016.04.020

    Article  CAS  Google Scholar 

  25. Nguyen CM, Reyniers MF, Marin GB (2010) Theoretical study of the adsorption of C1–C4 primary alcohols in H-ZSM-5. Phys Chem Chem Phys 12:9481–9493. https://doi.org/10.1039/c000503g

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen CM, Reyniers MF, Marin GB (2015) Adsorption thermodynamics of C1–C4 alcohols in H-FAU, H-MOR, H-ZSM-5, and H-ZSM-22. J Catal 322:91–103. https://doi.org/10.1016/j.jcat.2014.11.013

    Article  CAS  Google Scholar 

  27. Alexopoulos K, Lee MS, Liu Y, Zhi Y, Liu Y, Reyniers MF, Marin GB, Glezakou VA, Rousseau R, Lercher JA (2016) Anharmonicity and confinement in zeolites: structure, spectroscopy, and adsorption free energy of ethanol in H-ZSM-5. J Phys Chem C 120:7172–7182. https://doi.org/10.1021/acs.jpcc.6b00923

    Article  CAS  Google Scholar 

  28. Zhou X, Wang C, Chu Y, Xu J, Wang Q, Qi G, Zhao X, Feng N, Deng F (2019) Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. Nat Commun 10:1961. https://doi.org/10.1038/s41467-019-09956-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu CTW, Chang CD (1985) Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5. J Phys Chem 89:1569–1571. https://doi.org/10.1021/j100255a005

    Article  CAS  Google Scholar 

  30. Jungsuttiwong S, Lomratsiri J, Limtrakul J (2011) Characterization of acidity in [B], [Al], and [Ga] isomorphously substituted ZSM-5: embedded DFT/UFF approach. Int J Quantum Chem 111:2275–2282. https://doi.org/10.1002/qua.22531

    Article  CAS  Google Scholar 

  31. Deka RC, Vetrivel R, Pal S (1999) Application of hard-soft acid-base principle to study Brönsted acid sites in zeolite clusters: a quantum chemical study. J Phys Chem A 103:5978–5982. https://doi.org/10.1021/jp984267k

    Article  CAS  Google Scholar 

  32. Yuan SP, Wang JG, Li YW, Jiao H (2002) Brønsted acidity of isomorphously substituted ZSM-5 by B, Al, Ga, and Fe. Density functional investigations. J Phys Chem A 106:8167–8172. https://doi.org/10.1021/jp025792t

    Article  CAS  Google Scholar 

  33. Yuan SP, Wang JG, Li YW, Jiao H (2004) Density functional investigations into the siting of Fe and the acidic properties of isomorphously substituted mordenite by B, Al, Ga and Fe. J Mol Struct (Thoechem) 674:267–274. https://doi.org/10.1016/S0166-1280(03)00463-9

    Article  CAS  Google Scholar 

  34. Wang Y, Yang G, Zhou D, Bao X (2004) Density functional theory study of chemical composition influence on the acidity of H-MCM-22 zeolite. J Phys Chem B 108:18228–18233. https://doi.org/10.1021/jp049384w

    Article  Google Scholar 

  35. Wang Y, Zhou D, Yang G, Miao S, Liu X, Bao X (2004) A DFT study on isomorphously substituted MCM-22 zeolite. J Phys Chem A 108:6730–6734. https://doi.org/10.1021/jp0376875

    Article  CAS  Google Scholar 

  36. Patet RE, Koehle M, Lobo RF, Caratzoulas S, Vlachos DG (2017) General acid-type catalysis in the dehydrative aromatization of furans to aromatics in H-[Al]-BEA, H-[Fe]-BEA, H-[Ga]-BEA, and H-[B]-BEA zeolites. J Phys Chem C 121:13666–13679. https://doi.org/10.1021/acs.jpcc.7b02344

    Article  CAS  Google Scholar 

  37. Wannapakdee W, Suttipat D, Dugkhuntod P, Yutthalekha T, Thivasasith A, Kidkhunthod P, Nokbin S, Pengpanich S, Limtrakul J, Wattanakit C (2019) Aromatization of C5 hydrocarbons over Ga-modified hierarchical HZSM-5 nanosheets. Fuel 236:1243–1253. https://doi.org/10.1016/j.fuel.2018.09.093

    Article  CAS  Google Scholar 

  38. Derouane EG, Chang CD (2000) Confinement effects in the adsorption of simple bases by zeolites. Microporous Mesoporous Mater 35–36:425–433. https://doi.org/10.1016/S1387-1811(99)00239-5

    Article  CAS  Google Scholar 

  39. Boekfa B, Choomwattana S, Khongpracha P, Limtrakul J (2009) Effects of the zeolite framework on the adsorptions and hydrogen-exchange reactions of unsaturated aliphatic, aromatic, and heterocyclic compounds in ZSM-5 zeolite: a combination of perturbation theory (MP2) and a newly developed density functional theory (M06–2X) in ONIOM scheme. Langmuir 25:12990–12999. https://doi.org/10.1021/la901841w

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  41. Boekfa B, Pantu P, Probst M, Limtrakul J (2010) Adsorption and tautomerization reaction of acetone on acidic zeolites: the confinement effect in different types of zeolites. J Phys Chem C 114:15061–15067. https://doi.org/10.1021/jp1058947

    Article  CAS  Google Scholar 

  42. Klinyod S, Boekfa B, Pornsatitworakul S, Maihom T, Jarussophon N, Treesukol P, Wattanakit C, Limtrakul J (2019) Theoretical and experimental study on the 7-hydroxy-4-methylcoumarin synthesis with H-beta zeolite. ChemistrySelect 4:10660–10667. https://doi.org/10.1002/slct.201902596

    Article  CAS  Google Scholar 

  43. Kongpatpanich K, Nanok T, Boekfa B, Probst M, Limtrakul J (2011) Structures and reaction mechanisms of glycerol dehydration over H-ZSM-5 zeolite: a density functional theory study. Phys Chem Chem Phys 13:6462–6470. https://doi.org/10.1039/c0cp01720e

    Article  CAS  PubMed  Google Scholar 

  44. Injongkol Y, Maihom T, Choomwattana S, Boekfa B, Limtrakul J (2017) A mechanistic study of ethanol transformation into ethene and acetaldehyde on an oxygenated Au-exchanged ZSM-5 zeolite. RSC Adv 7:38052–38058. https://doi.org/10.1039/c7ra06313j

    Article  CAS  Google Scholar 

  45. Paluka V, Maihom T, Warakulwit C, Srifa P, Boekfa B, Treesukol P, Poolmee P, Limtrakul J (2020) Density functional study of the effect of cation exchanged Sn-beta zeolite for the diels-alder reaction between furan and methyl acrylate. Chem Phys Lett 754:137743. https://doi.org/10.1016/j.cplett.2020.137743

    Article  CAS  Google Scholar 

  46. Boekfa B, Pahl E, Gaston N, Sakurai H, Limtrakul J, Ehara M (2014) C-Cl bond activation on Au/Pd bimetallic nanocatalysts studied by density functional theory and genetic algorithm calculations. J Phys Chem C 118:22188–22196. https://doi.org/10.1021/jp5074472

    Article  CAS  Google Scholar 

  47. Boekfa B, Treesukol P, Injongkol Y, Maihom T, Maitarad P, Limtrakul J (2018) The activation of methane on Ru, Rh, and Pd decorated carbon nanotube and boron nitride nanotube: a DFT study. Catalysts 8:190. https://doi.org/10.3390/catal8050190

    Article  CAS  Google Scholar 

  48. Ketrat S, Maihom T, Treesukul P, Boekfa B, Limtrakul J (2019) Theoretical study of methane adsorption and C─H bond activation over Fe-embedded graphene: effect of external electric field. J Comput Chem 40:2819–2826. https://doi.org/10.1002/jcc.26058

    Article  CAS  PubMed  Google Scholar 

  49. Pueyo Bellafont N, Álvarez Saiz G, Viñes F, Illas F (2016) Performance of Minnesota functionals on predicting core-level binding energies of molecules containing main-group elements. Theor Chem Acc 135:1–9. https://doi.org/10.1007/s00214-015-1787-3

    Article  CAS  Google Scholar 

  50. Gupta A, Boekfa B, Sakurai H, Ehara M, Priyakumar UD (2016) Structure, interaction, and dynamics of Au/Pd bimetallic nanoalloys dispersed in aqueous ethylpyrrolidone, a monomeric moiety of polyvinylpyrrolidone. J Phys Chem C 120:17454–17464. https://doi.org/10.1021/acs.jpcc.6b05097

    Article  CAS  Google Scholar 

  51. Nimnual P, Tummatorn J, Boekfa B, Thongsornkleeb C, Ruchirawat S, Piyachat P, Punjajom K (2019) Construction of 5-aminotetrazoles via in situ generation of carbodiimidium ions from ketones promoted by TMSN3/TfOH. J Org Chem 84:5603–5613. https://doi.org/10.1021/acs.joc.9b00555

    Article  CAS  PubMed  Google Scholar 

  52. Khownium K, Romsaiyud J, Borwornpinyo S, Wongkrasant P, Pongkorpsakol P, Muanprasat C, Boekfa B, Vilaivan T, Ruchirawat S, Limtrakul J (2019) Turn-on fluorescent sensor for the detection of lipopolysaccharides based on a novel bispyrenyl terephtalaldehyde-bis-guanylhydrazone. New J Chem 43:7051–7056. https://doi.org/10.1039/c9nj00323a

    Article  CAS  Google Scholar 

  53. Zhao P, Boekfa B, Nishitoba T, Tsunoji N, Sano T, Yokoi T, Ogura M, Ehara M (2020) Theoretical study on 31P NMR chemical shifts of phosphorus-modified CHA zeolites. Microporous Mesoporous Mater 294:109908. https://doi.org/10.1016/j.micromeso.2019.109908

    Article  CAS  Google Scholar 

  54. Shetsiri S, Thivasasith A, Saenluang K, Wannapakdee W, Salakhum S, Wetchasat P, Nokbin S, Limtrakul J, Wattanakit C (2019) Sustainable production of ethylene from bioethanol over hierarchical ZSM-5 nanosheets. Sustainable Energy Fuels 3:115–126. https://doi.org/10.1039/c8se00392k

    Article  CAS  Google Scholar 

  55. Knaeble W, Iglesia E (2016) Kinetic and theoretical insights into the mechanism of alkanol dehydration on solid Bronsted acid catalysts. The Journal of Physical Chemistry C 120:3371–3389. https://doi.org/10.1021/acs.jpcc.5b11127

    Article  CAS  Google Scholar 

  56. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct (Thoechem) 461–462:1–21. https://doi.org/10.1016/S0166-1280(98)00475-8

    Article  Google Scholar 

  57. Derouane EG (1998) Zeolites as solid solvents. J Mol Catal A: Chem 134:29–45. https://doi.org/10.1016/S1381-1169(98)00021-1

    Article  CAS  Google Scholar 

  58. Stefanovich EV, Truong TN (1996) Embedded density functional approach for calculations of adsorption on ionic crystals. J Chem Phys 104:2946–2955. https://doi.org/10.1063/1.471115

    Article  CAS  Google Scholar 

  59. Allavena M, Seiti K, Kassab E, Ferenczy G, Ángyán JG (1990) Quantum-chemical model calculations on the acidic site of zeolites including Madelung-potential effects. Chem Phys Lett 168:461–467. https://doi.org/10.1016/0009-2614(90)85144-2

    Article  CAS  Google Scholar 

  60. Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over h-zsm-5: an ONIOM study. J Phys Chem C 113:6654–6662. https://doi.org/10.1021/jp809746a

    Article  CAS  Google Scholar 

  61. Boekfa B, Pantu P, Limtrakul J (2008) Interactions of amino acids with H-ZSM-5 zeolite: an embedded ONIOM study. J Mol Struct 889:81–88. https://doi.org/10.1016/j.molstruc.2008.01.026

    Article  CAS  Google Scholar 

  62. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnen Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  63. Freude D, Klinowski J, Hamdan H (1988) Solid-state NMR studies of the geometry of brønsted acid sites in zeolitic catalysts. Chem Phys Lett 149:355–362. https://doi.org/10.1016/0009-2614(88)85107-8

    Article  CAS  Google Scholar 

  64. Muraoka K, Chaikittisilp W, Okubo T (2016) Energy analysis of aluminosilicate zeolites with comprehensive ranges of framework topologies, chemical compositions, and aluminum distributions. J Am Chem Soc 138:6184–6193. https://doi.org/10.1021/jacs.6b01341

    Article  CAS  PubMed  Google Scholar 

  65. Gagne OC, Hawthorne FC (2018) Bond-length distributions for ions bonded to oxygen: metalloids and post-transition metals: metalloids. Acta Crystallogr B Struct Sci Cryst Eng Mater 74:63–78. https://doi.org/10.1107/S2052520617017437

    Article  CAS  PubMed Central  Google Scholar 

  66. Cant NW, Hall WK (1972) Studies of the hydrogen held by solids. XXI. The interaction between ethylene and hydroxyl groups of a Y-zeolite at elevated temperatures. J Catal 25:161–172. https://doi.org/10.1016/0021-9517(72)90213-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Nattida Maeboonruan acknowledges the Science Technology, Engineering, Mathematics (STEM) grant SCA-CO-2561-6176-TH. Bundet Boekfa acknowledges the Thailand Research Fund (TRF) grant MRG6080103. Support from the Kasetsart Research and Development Institute (KURDI) and the Faculty of Liberal Arts and Science Kasetsart University; the Thailand Graduate Institute of Science and Technology (TGIST); the National e-Science Infrastructure Consortium; the Graduate School of Kasetsart University; the Ministry of Higher Education, Science, Research and Innovation; and the Thai Agro Energy Public Company Limited is also acknowledged.

Funding

This work was supported by Science Technology, Engineering, Mathematics (STEM) grant SCA-CO-2561-6176-TH and the Thailand Research Fund (TRF) grant MRG6080103.

Author information

Authors and Affiliations

Authors

Contributions

Nattida Maeboonruan: investigation, methodology, and writing.

Bundet Boekfa: supervision, conceptualization, investigation, methodology, and writing.

Thana Maihom: conceptualization and investigation.

Piti Treesukol: conceptualization and writing.

Kanokwan Kongpatpanich: conceptualization and investigation.

Supawadee Namuangruk: conceptualization and investigation.

Michael Probst: conceptualization and writing.

Jumras Limtrakul: conceptualization and investigation.

Corresponding author

Correspondence to Bundet Boekfa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9.12 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeboonruan, N., Boekfa, B., Maihom, T. et al. Adsorption and dehydration of ethanol on isomorphously B, Al, and Ga substituted H-ZSM-5 zeolite: an embedded ONIOM study. J Mol Model 27, 354 (2021). https://doi.org/10.1007/s00894-021-04979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04979-8

Keywords

Navigation