Skip to main content
Log in

A Comparative Study of n-Butane Isomerization over H-Beta and H-ZSM-5 Zeolites at Low Temperatures: Effects of Acid Properties and Pore Structures

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The influences of acidic properties and pore structures of H-Beta and H-ZSM-5 zeolites on the reaction properties of n-butane isomerization at low temperatures were investigated. The results showed that bimolecular pathway of n-butane conversion predominates over H-ZSM-5 zeolites, while the monomolecular and bimolecular pathways occur simultaneously over H-Beta zeolites. The conversion rate of n-butane strongly relies on the amount of strong Brønsted acid sites regardless of zeolite topology. However, the topology of zeolites crucially determines the products distribution, and the density of strong Brønsted acid sites plays a secondary role. The cavities of zeolites, formed in the intersections of channels, provide the places for the bimolecular reaction. The formation of trimethyl C8 intermediates is spatially restricted in the narrow channel intersections of H-ZSM-5 zeolites, resulting in higher contribution of n-butane disproportionation reaction. In addition, the narrow pore channels of H-ZSM-5 zeolite limit the monomolecular isomerization of n-butane molecules and affect the diffusion of heavier products (pentane) produced from bimolecular reaction, leading to the severe secondary reaction and high selectivity to propane. In contrast, the pore channels of H-Beta zeolite allow the monomolecular isomerization of n-butane and the deposition of coke.

Graphical Abstract

The topology of zeolites crucially determines the products distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Villegas JI, Kumar N, Heikkilä T, Smiešková A, Hudec P, Salmi T, Murzin DY (2005) App Catal A 284:223

    Article  CAS  Google Scholar 

  2. Villegas JI, Kumar N, Heikkilä T, Lehto VP, Salmi P, Murzin DY (2006) Chem Eng J 120:83

    Article  CAS  Google Scholar 

  3. Dorado F, Romero R, Cañizares P (2002) Appl Catal A 236:235

    Article  CAS  Google Scholar 

  4. Cañizares P, De Lucas A, Dorado F, Pérez D (2000) Appl Catal A 190:233

    Article  Google Scholar 

  5. Oliveira AC, Essayem N, Tuel A, Clacens JM, Tâarit YB (2008) J Mol Catal A 293:31

    Article  CAS  Google Scholar 

  6. Babůrek E, Nováková J (1999) App Catal A 185:123

    Article  Google Scholar 

  7. Wang P, Zhang M, Zhang W, Yang C, Li C (2017) Ind Eng Chem Res 56:8456

    Article  CAS  Google Scholar 

  8. Wang P, Zhang W, Zhang Q, Xu Z, Yang C, Li C (2018) Appl Catal A 550:98

    Article  CAS  Google Scholar 

  9. Wulfers MJ, Jentoft FC (2015) J Catal 330:507

    Article  CAS  Google Scholar 

  10. Wang P, Zhang J, Wang G, Li C, Yang C (2016) J Catal 338:124

    Article  CAS  Google Scholar 

  11. Pirngruber GD, Zinck-Stagno OPE, Seshan K, Lercher JA (2000) J Catal 190:374

    Article  CAS  Google Scholar 

  12. Rossi SD, Moretti G, Ferraris G, Gazzoli D (2002) Catal Lett 78:119

    Article  Google Scholar 

  13. Kurniawan T, Muraza O, Bakare IA, Sanhoob MA, Al-Amer AM (2018) Ind Eng Chem Res 57:1894

    Article  CAS  Google Scholar 

  14. Corma A, Juan-Rajadell MI, López-Nieto JM, Martinez A, Martinez C (1994) Appl Catal A 111:175

    Article  CAS  Google Scholar 

  15. Babůrek E, Novakova J (2000) Appl Catal A 190:241

    Article  Google Scholar 

  16. Arzumanov SS, Stepanov AG, Freude D (2008) J Phys Chem C 112:11869

    Article  CAS  Google Scholar 

  17. Guisnet M, Bichon P, Gnep NS, Essayem N (1995) Top Catal 11–12:247

    Google Scholar 

  18. Yori JC, D’Amato MA, Costa G, Parera JM (1995) React Kinet Catal L 56:129

    Article  CAS  Google Scholar 

  19. Asuquo RA, Eder-Mirth G, Lercher JA (1995) J Catal 155:376

    Article  CAS  Google Scholar 

  20. Almanza LO, Narbeshuber T, D’Araujo P, Naccache C, Taarit YB (1999) Appl Catal A 178:39

    Article  Google Scholar 

  21. Asuquo RA, Eder-Mirth G, Seshan K, Pieterse JAZ, Lercher JA (1997) J Catal 168:292

    Article  CAS  Google Scholar 

  22. Nieminen V, Kangas M, Salmi T, Murzin DY (2005) Ind Eng Chem Res 44:471

    Article  CAS  Google Scholar 

  23. Tran MT, Gnep NS, Szabo G, Guisnet M (1998) J Catal 174:185

    Article  CAS  Google Scholar 

  24. Caeiro G, Carvalho RH, Wang X, Lemos MANDA, Lemos F, Guisnet M, Ribeiro FR (2006) J Mol Catal A 255:131

    Article  CAS  Google Scholar 

  25. Foster MD, Rivin I, Treacy MMJ, Friedrichs OD (2006) Microporous Mesoporous Mater 90:32

    Article  CAS  Google Scholar 

  26. Macht J, Carr RT, Iglesia E (2009) J Am Chem Soc 131:6554

    Article  CAS  Google Scholar 

  27. Kramer GJ, Santen RAV, Emeis CA, Nowak AK (1993) Nature 363:529

    Article  CAS  Google Scholar 

  28. Li X, Nagaoka K, Lercher JA (2004) J Catal 227:130

    Article  CAS  Google Scholar 

  29. Chen J, Cai T, Jing X, Zhu L, Zhou Y, Xiang Y, Xia D (2016) Appl Surf Sci 390:157

    Article  CAS  Google Scholar 

  30. Patel A, Coudurier G, Essayem N, Ve´Drine JC (1997) J Chem Soc Faraday Trans 93:347

    Article  CAS  Google Scholar 

  31. Sonnemans MHW, Heijer CD, Crocker M (1993) J Phys Chem 97:440

    Article  CAS  Google Scholar 

  32. Zhao G, Teng J, Zhang Y, Xie Z, Yue Y, Chen Q, Tang Y (2006) Appl Catal A 299:167

    Article  CAS  Google Scholar 

  33. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  34. Sachtler WMH, Adeeva V (1997) Appl Catal A 163:237

    Article  Google Scholar 

  35. Macht J, Janik MJ, Neurock M, Iglesia E (2008) J Am Chem Soc 130:10369

    Article  CAS  Google Scholar 

  36. Koyama TR, Hayashi Y, Horie H, Kawauchi S, Matsumoto A, Iwase Y, Sakamoto Y, Miyaji A, Motokura K, Baba T (2010) Phys Chem Chem Phys 12:2541

    Article  CAS  Google Scholar 

  37. Javaid R, Urata K, Furukawa S, Komatsu T (2015) Appl Catal A 491:100

    Article  CAS  Google Scholar 

  38. Lee K, Lee S, Jun Y, Choi M (2017) J Catal 347:222

    Article  CAS  Google Scholar 

  39. Cerqueira HS, Ayrault P, Datka J, Guisnet M (2000) Microporous Mesoporous Mater 38:197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by China University of Petroleum for Postgraduate Technology Innovation Project (YCX2018036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyi Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 766 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, P., Yang, C. et al. A Comparative Study of n-Butane Isomerization over H-Beta and H-ZSM-5 Zeolites at Low Temperatures: Effects of Acid Properties and Pore Structures. Catal Lett 149, 1017–1025 (2019). https://doi.org/10.1007/s10562-019-02683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02683-0

Keywords

Navigation