Skip to main content
Log in

Performance of Minnesota functionals on predicting core-level binding energies of molecules containing main-group elements

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Here we explored the performance of M06, M06-L, M11, and M11-L Minnesota functionals on predicting core-level 1s binding energies (BEs) and BE shifts (ΔBEs) for a set of 20 organic molecules containing main-group elements C → F (39 core levels in total). The broadly used Hartree–Fock (HF) and Becke–Lee–Yang–Parr (B3LYP) methods have also been studied for comparison. A statistical analysis comparing with X-ray photoelectron spectroscopy (XPS) experimental values shows that overall BEs estimations only deviate a small percentage from the experimental values, yet the absolute deviations are generally too large, with the different methods over/underestimating the reported values. However, taking the contribution of relativistic effects of BEs into account leads to larger differences. Overall, the performance of the explored Minnesota functionals is not satisfactory, with errors of up to 1 eV, except for the M06-L meta-GGA functional. In this case, the mean absolute deviation is below 0.1 eV and thus within XPS chemical resolution. Hence, M06-L poses itself as a rather accurate and computational expense-wise method for estimating BEs of organic molecules. Nevertheless, the observed deviations almost cancel when considering ΔBEs with respect to some arbitrary reference, with errors within 0.2–0.3 eV, indicating that these are largely systematic, which in turn implies that the corresponding methods have room for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegbahn K, Nordling C, Falhman A, Nordberg R, Hamrin K, Hedman J, Johansson G, Bergmark T, Karlsson SE, Lindgren I, Lindberg B (1967) ESCA-atomic, molecular and solid state structure studied by means of electron spectroscopy. Alwmvist and Wiksells Boktryckeri AB, Uppsala

    Google Scholar 

  2. Siegbahn K, Nordling C, Johansson G, Hedman J, Hedén PF, Hamrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1969) ESCA-applied to free molecules. North-Holland, Amsterdam

    Google Scholar 

  3. Bakke AA, Chen HW, Jolly WL (1980) J Electron Spectrosc Relat Phenom 20:333

    Article  CAS  Google Scholar 

  4. Lykhach Y, Staudt T, Lorenz MPA, Streber R, Bayer A, Steinrück HP, Libuda J (2010) ChemPhysChem 11:1496

    Article  CAS  Google Scholar 

  5. Happel M, Luckas N, Viñes F, Sobota M, Laurin M, Görling A, Libuda J (2011) J Phys Chem C 115:479

    Article  CAS  Google Scholar 

  6. Niedermaier I, Kolbeck C, Taccardi N, Schulz PS, Li J, Drewello T, Wasserscheid P, Steinrück HP, Maier F (2012) ChemPhysChem 13:1725

    Article  CAS  Google Scholar 

  7. Barr TL (1994) The principles and practice of X-ray photoelectron spectroscopy. Taylor and Francis, London

    Google Scholar 

  8. Siegbahn K (1982) Science 217:111

    Article  CAS  Google Scholar 

  9. Bagus PS (1965) Phys Rev 139:A619

    Article  Google Scholar 

  10. Bagus PS, Ilton ES, Nelin CJ (2013) Surf Sci Rep 68:273

    Article  CAS  Google Scholar 

  11. Bagus PS, Illas F, Pacchioni G, Parmigiani F (1999) J Electron Spectrosc Relat Phenom 100:215

    Article  CAS  Google Scholar 

  12. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Theoret Chem Acc 99:391

    CAS  Google Scholar 

  13. Sousa SF, Fernandes PA, Ramos MJ (2006) J Phys Chem A 111:10439

    Article  Google Scholar 

  14. Chong DP (1995) J Chem Phys 103:1842

    Article  CAS  Google Scholar 

  15. Chong DP, Gritsenko EJ, Baerends EJ (2002) J Chem Phys 116:1760

    Article  CAS  Google Scholar 

  16. Segala M, Takahata Y, Chong DP (2006) J Electron Spectrosc Relat Phenom 151:9

    Article  CAS  Google Scholar 

  17. Takahata Y, Chong DP (2003) J Electron Spectrosc Relat Phenom 133:69

    Article  CAS  Google Scholar 

  18. van Voorhis T, Scuseria GE (1998) J Chem Phys 109:400

    Article  Google Scholar 

  19. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Peverati R, Truhlar DG (2014) Phil Trans R Soc A 372:20120476

    Article  Google Scholar 

  23. Zhao Y, Truhlar DG (2006) Theor Chem Account 120:215

    Article  Google Scholar 

  24. Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810

    Article  CAS  Google Scholar 

  25. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  26. Peverati R, Truhlar DG (2012) J Phys Chem Lett 3:117

    Article  CAS  Google Scholar 

  27. Lou S, Zhao Y, Truhlar DG (2012) J Phys Chem Lett 3:2975

    Article  Google Scholar 

  28. Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J (2001) J Phys Chem B 105:4018

    Article  CAS  Google Scholar 

  29. Ferrighi L, Madsen GKH, Hammer B (2010) Chem Phys Lett 492:183

    Article  CAS  Google Scholar 

  30. See https://bse.pnl.gov/bse/portal for the basis sets

  31. Pueyo Bellafont N, Illas F, Bagus PS (2015) Phys Chem Chem Phys 17:4015

    Article  CAS  Google Scholar 

  32. Pueyo Bellafont N, Bagus PS, Illas F (2015) J Chem Phys 142:214102

    Article  Google Scholar 

  33. Illas F, Moreira I de PR, Bofill JM, Filatov M (2006) Theoret Chem Acc 115:587

    Article  Google Scholar 

  34. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen HSJ, Koseki N, Matsunaga K, Nguyen A, Su S, Windus TL, Dupuis MJ, Montgomery A (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  35. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier: Amsterdam, p 1167

  36. Bagus PS (2015) private communication

  37. Sauer T, Visscher L, Jensen HJA, Bast R, with contributions from Bakken C, Dyall KG, Dubillard S, Ekström U, Eliav E, Enevoldsen T, Faßhauer E, Fleig T, Fossgaard O, Gomes ASP, Helgaker T, Henriksson J, Ilias M, Jacob CR, Kencht S, Komorovsky S, Kullie O, Larsen CV, Lærdhal JK, Lee YS, Nataraj HS, Norman P, Olejniczak G, Olsen J, Park YC, Pedersen JK, Pernpointner M, di Remigio R, Ruud K, Salek P, Schimmelpfenning B, Sikkema J, Thorvaldsen AJ, Thyssen J, van Stralen J, Villaume S, Visser O, Winther T, Yamamoto S (2014) DIRAC, a relativistic ab initio electronic structure program, release DIRAC14. See http://www.diracprogram.org

  38. CLIPS is a program system to compute ab initio SCF and correlated wavefunctions for polyatomic systems. It has been developed based on the publicly available programs in the ALCHEMY package from the IBM San Jose Laboratory by Bagus, PS, Liu B, McLean AD, Yoshimine M

  39. Visscher L, Visser O, Aerts PJC, Merenga H, Nieuwpoort WC (1994) Comput Phys Commun 81:120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very much indebted to Paul S. Bagus for providing the relativistic values for the core-level binding energies of atoms C to F and for many highlighting and inspiring discussions. This work has been supported by Spanish MINECO CTQ2012-30751 grant and, in part, by Generalitat de Catalunya grants 2014SGR97 and XRQTC. F.V. thanks MINECO for a postdoctoral Ramón y Cajal (RyC) research contract (RYC-2012-10129). We acknowledge Consorci de Serveis Universitaris de Catalunya (CSUC; former CESCA) for providing access to computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Illas.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Appendix

Appendix

See Table 5.

Table 5 List of the studied molecules conforming the dataset

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pueyo Bellafont, N., Álvarez Saiz, G., Viñes, F. et al. Performance of Minnesota functionals on predicting core-level binding energies of molecules containing main-group elements. Theor Chem Acc 135, 35 (2016). https://doi.org/10.1007/s00214-015-1787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1787-3

Keywords

Navigation