Skip to main content
Log in

Kinetic and mechanistic study of ethanol dehydration to diethyl ether over Ni-ZSM-5 in a closed batch reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present work, mechanistic pathways and kinetics of catalytic dehydration of ethanol were investigated in a closed batch reactor for the formation of diethyl ether, and ethylene over the synthesized NiO loaded HZSM-5 in the range of 160–240 °C. The effect of the presence of water on reaction performance was also evaluated. No significant negative impact of water over diethyl ether yield was observed up to 1:1 ethanol–water molar ratio. The proposed two-step kinetic model highlights the mechanistically essential comparison between the strong (Brønsted) and weak (Lewis) acid sites of catalyst for ethanol conversion to diethyl ether. Intramolecular dehydration of ethanol over strong acid sites led to ethylene formation. Enhancement of weak acid sites due to NiO loading over HZSM-5 led to interestingly higher yields of diethyl ether by a combination of ethylene and ethanol. Optimal consideration for maximum conversions was observed with high reusability.

Graphic abstract

Graphical abstract for ethanol dehydration on Ni-HZSM-5 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farrell AE, Plevin RJ, Turner BT et al (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508. https://doi.org/10.1126/science.1121416

    Article  CAS  PubMed  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  3. Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295. https://doi.org/10.1016/j.biortech.2007.11.013

    Article  CAS  PubMed  Google Scholar 

  4. Groom MJ, Gray EM, Townsend PA (2008) Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22:602–609. https://doi.org/10.1111/j.1523-1739.2007.00879.x

    Article  PubMed  Google Scholar 

  5. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146. https://doi.org/10.1016/j.cbpa.2006.02.035

    Article  CAS  PubMed  Google Scholar 

  6. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/J.BIORTECH.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  7. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. https://doi.org/10.1016/J.TIBTECH.2006.10.004

    Article  PubMed  Google Scholar 

  8. Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. Chemsuschem 6:1595–1614. https://doi.org/10.1002/cssc.201300214

    Article  CAS  PubMed  Google Scholar 

  9. Takei T, Iguchi N, Haruta M (2011) Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal Surv Asia 15:80–88. https://doi.org/10.1007/s10563-011-9112-1

    Article  CAS  Google Scholar 

  10. Choudhary VR, Nayak VS (1985) Conversion of alcohols to aromatics on H-SM—5: influence of SiAl ratio and degree of cation exchange on product distribution. Zeolites 5:325–328. https://doi.org/10.1016/0144-2449(85)90167-8

    Article  CAS  Google Scholar 

  11. Costa E, Uguina A, Aguado J, Hernandez PJ (1985) Ethanol to gasoline process: effect of variables, mechanism, and kinetics. Ind Eng Chem Process Des Dev 24:239–244. https://doi.org/10.1021/i200029a003

    Article  CAS  Google Scholar 

  12. Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energy 32:3238–3247. https://doi.org/10.1016/J.IJHYDENE.2007.04.038

    Article  CAS  Google Scholar 

  13. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19:2098–2106. https://doi.org/10.1021/ef0500538

    Article  CAS  Google Scholar 

  14. Saha SK, Sivasanker S (1992) Influence of Zn-and Ga-doping on the conversion of ethanol to hydrocarbons over ZSM-5. Catal Lett 15:413–418. https://doi.org/10.1007/bf00769166

    Article  CAS  Google Scholar 

  15. Talukdar AK, Bhattacharyya KG, Sivasanker S (1997) HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons. Appl Catal A 148:357–371. https://doi.org/10.1016/S0926-860X(96)00240-2

    Article  CAS  Google Scholar 

  16. Inaba M, Murata K, Saito M, Takahara I (2006) Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts. React Kinet Catal Lett 88:135–141. https://doi.org/10.1007/s11144-006-0120-5

    Article  CAS  Google Scholar 

  17. Aguayo AT, Gayubo AG, Tarrío AM et al (2002) Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite. J Chem Technol Biotechnol 77:211–216. https://doi.org/10.1002/jctb.540

    Article  CAS  Google Scholar 

  18. Calsavara V, Baesso ML, Fernandes-Machado NRC (2008) Transformation of ethanol into hydrocarbons on ZSM-5 zeolites modified with iron in different ways. Fuel 87:1628–1636. https://doi.org/10.1016/j.fuel.2007.08.006

    Article  CAS  Google Scholar 

  19. Zhang D, Wang R, Yang X (2008) Effect of P content on the catalytic performance of P-modified HZSM-5 catalysts in dehydration of ethanol to ethylene. Catal Lett 124:384–391. https://doi.org/10.1007/s10562-008-9481-x

    Article  CAS  Google Scholar 

  20. Ouyang J, Kong F, Su G et al (2009) Catalytic conversion of bio-ethanol to ethylene over La-modified HZSM-5 catalysts in a bioreactor. Catal Lett 132:64–74. https://doi.org/10.1007/s10562-009-0047-3

    Article  CAS  Google Scholar 

  21. Madeira FF, Gnep NS, Magnoux P et al (2009) Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity. Appl Catal A 367:39–46. https://doi.org/10.1016/J.APCATA.2009.07.033

    Article  CAS  Google Scholar 

  22. Bailey B, Eberhardt J, Goguen S, Erwin J (1997) Diethyl ether (DEE) as a renewable diesel fuel. J Fuels Lubr 106:1578–1584

    Google Scholar 

  23. Ibrahim A (2016) Investigating the effect of using diethyl ether as a fuel additive on diesel engine performance and combustion. Appl Therm Eng 107:853–862. https://doi.org/10.1016/J.APPLTHERMALENG.2016.07.061

    Article  CAS  Google Scholar 

  24. Sezer İ (2018) A review study on the using of diethyl ether in diesel engines: effects on fuel properties and engine performance. Energy Technol 6:2084–2114. https://doi.org/10.1002/ente.201800158

    Article  CAS  Google Scholar 

  25. Cohen JB (1920) A class-book of organic chemistry. Macmillan and Co., Limited, London

    Google Scholar 

  26. Sousa ZSB, Veloso CO, Henriques CA, da Silva VT (2016) Ethanol conversion into olefins and aromatics over HZSM-5 zeolite: influence of reaction conditions and surface reaction studies. J Mol Catal A 422:266–274

    Article  CAS  Google Scholar 

  27. Phung TK, Busca G (2015) Diethyl ether cracking and ethanol dehydration: acid catalysis and reaction paths. Chem Eng J 272:92–101. https://doi.org/10.1016/j.cej.2015.03.008

    Article  CAS  Google Scholar 

  28. Chiang H, Bhan A (2010) Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J Catal 271:251–261. https://doi.org/10.1016/J.JCAT.2010.01.021

    Article  CAS  Google Scholar 

  29. Rodríguez-González L, Hermes F, Bertmer M et al (2007) The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy. Appl Catal A 328:174–182. https://doi.org/10.1016/J.APCATA.2007.06.003

    Article  Google Scholar 

  30. Chen Y, Wu Y, Tao L et al (2010) Dehydration reaction of bio-ethanol to ethylene over modified SAPO catalysts. J Ind Eng Chem 16:717–722. https://doi.org/10.1016/J.JIEC.2010.07.013

    Article  CAS  Google Scholar 

  31. Alharbi W, Brown E, Kozhevnikova EF, Kozhevnikov IV (2014) Dehydration of ethanol over heteropoly acid catalysts in the gas phase. J Catal 319:174–181. https://doi.org/10.1016/J.JCAT.2014.09.003

    Article  CAS  Google Scholar 

  32. Fan D, Dai D-J, Wu H-S (2013) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials (Basel) 6:101–115. https://doi.org/10.3390/ma6010101

    Article  CAS  Google Scholar 

  33. Kagyrmanova AP, Chumachenko VA, Korotkikh VN et al (2011) Catalytic dehydration of bioethanol to ethylene: Pilot-scale studies and process simulation. Chem Eng J 176–177:188–194. https://doi.org/10.1016/J.CEJ.2011.06.049

    Article  Google Scholar 

  34. Bokade VV, Yadav GD (2011) Heteropolyacid supported on montmorillonite catalyst for dehydration of dilute bio-ethanol. Appl Clay Sci 53:263–271. https://doi.org/10.1016/J.CLAY.2011.03.006

    Article  CAS  Google Scholar 

  35. Rahmanian A, Ghaziaskar HS (2013) Continuous dehydration of ethanol to diethyl ether over aluminum phosphate–hydroxyapatite catalyst under sub and supercritical condition. J Supercrit Fluids 78:34–41. https://doi.org/10.1016/J.SUPFLU.2013.03.021

    Article  CAS  Google Scholar 

  36. Varisli D, Dogu T, Dogu G (2007) Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chem Eng Sci 62:5349–5352. https://doi.org/10.1016/J.CES.2007.01.017

    Article  CAS  Google Scholar 

  37. Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105:249–252. https://doi.org/10.1007/s10562-005-8698-1

    Article  CAS  Google Scholar 

  38. Doğu T, Varişli D (2007) Alcohols as alternatives to petroleum for environmentally clean fuels and petrochemicals. Turk J Chem 31:551–567

    Google Scholar 

  39. Kito-Borsa T, Pacas DA, Selim S, Cowley SW (1998) Properties of an ethanol-diethyl ether-water fuel mixture for cold-start assistance of an ethanol-fueled vehicle. Ind Eng Chem Res 37:3366–3374. https://doi.org/10.1021/ie970171l

    Article  CAS  Google Scholar 

  40. Ibrahim A (2018) An experimental study on using diethyl ether in a diesel engine operated with diesel-biodiesel fuel blend. Eng Sci Technol Int J 21:1024–1033. https://doi.org/10.1016/J.JESTCH.2018.07.004

    Article  Google Scholar 

  41. Kaimal VK, Vijayabalan P (2016) An investigation on the effects of using DEE additive in a DI diesel engine fuelled with waste plastic oil. Fuel 180:90–96. https://doi.org/10.1016/J.FUEL.2016.04.030

    Article  CAS  Google Scholar 

  42. Cinar C, Can Ö, Sahin F, Yucesu HS (2010) Effects of premixed diethyl ether (DEE) on combustion and exhaust emissions in a HCCI-DI diesel engine. Appl Therm Eng 30:360–365. https://doi.org/10.1016/J.APPLTHERMALENG.2009.09.016

    Article  CAS  Google Scholar 

  43. Barik D, Murugan S (2016) Effects of diethyl ether (DEE) injection on combustion performance and emission characteristics of Karanja methyl ester (KME)–biogas fueled dual fuel diesel engine. Fuel 164:286–296. https://doi.org/10.1016/J.FUEL.2015.09.094

    Article  CAS  Google Scholar 

  44. Zhang X, Wang R, Yang X, Zhang F (2008) Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous Mater 116:210–215. https://doi.org/10.1016/J.MICROMESO.2008.04.004

    Article  CAS  Google Scholar 

  45. Ramesh K, Hui LM, Han Y, Borgna A (2009) Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. Catal Commun 10:567–571. https://doi.org/10.1016/j.catcom.2008.10.034

    Article  CAS  Google Scholar 

  46. Sheng Q, Ling K, Li Z, Zhao L (2013) Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene. Fuel Process Technol 110:73–78. https://doi.org/10.1016/J.FUPROC.2012.11.004

    Article  CAS  Google Scholar 

  47. Han Y, Lu C, Xu D et al (2011) Molybdenum oxide modified HZSM-5 catalyst: surface acidity and catalytic performance for the dehydration of aqueous ethanol. Appl Catal A 396:8–13. https://doi.org/10.1016/J.APCATA.2010.12.040

    Article  CAS  Google Scholar 

  48. Xin H, Li X, Fang Y et al (2014) Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites. J Catal 312:204–215. https://doi.org/10.1016/J.JCAT.2014.02.003

    Article  CAS  Google Scholar 

  49. Kamsuwan T, Praserthdam P, Jongsomjit B (2017) Diethyl ether production during catalytic dehydration of ethanol over Ru- and Pt-modified H-beta zeolite catalysts. J Oleo Sci 66(2):199–207

    Article  CAS  Google Scholar 

  50. Jingfa D, Guirong Z, Shuzhong D et al (1988) Acidic properties of ZSM-5 zeolite and conversion of ethanol to diethyl ether. Appl Catal 41:13–22. https://doi.org/10.1016/S0166-9834(00)80378-4

    Article  Google Scholar 

  51. Le Van MR, Levesque P, McLaughlin G, Dao LH (1987) Ethylene from ethanol over zeolite catalysts. Appl Catal 34:163–179. https://doi.org/10.1016/S0166-9834(00)82453-7

    Article  Google Scholar 

  52. Le Van MR, Nguyen TM, McLaughlin GP (1989) The bioethanol-to-ethylene (BETE) process. Appl Catal 48:265–277. https://doi.org/10.1016/S0166-9834(00)82798-0

    Article  Google Scholar 

  53. Phillips CB, Datta R (1997) Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions. Ind Eng Chem Res 36:4466–4475. https://doi.org/10.1021/ie9702542

    Article  CAS  Google Scholar 

  54. Bi J, Liu M, Wang X (2010) High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts. Catal Today 149:143–147. https://doi.org/10.1016/J.CATTOD.2009.04.016

    Article  CAS  Google Scholar 

  55. Díaz Alvarado F, Gracia F (2010) Steam reforming of ethanol for hydrogen production: thermodynamic analysis including different carbon deposits representation. Chem Eng J 165:649–657. https://doi.org/10.1016/J.CEJ.2010.09.051

    Article  Google Scholar 

  56. Tanabe K, Misono M, Hattori H, Ono Y (1990) New solid acids and bases: their catalytic properties. Elsevier, Amsterdam

    Google Scholar 

  57. Engelder CJ (2002) Studies in contact catalysis. J Phys Chem 21:676–704. https://doi.org/10.1021/cs4011343

    Article  CAS  Google Scholar 

  58. Wu Y, Marwil SJ (1980) Dehydration of alcohols. https://patents.google.com/patent/US4234752A/en

  59. Chen G, Li S, Jiao F, Yuan Q (2007) Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catal Today 125:111–119. https://doi.org/10.1016/J.CATTOD.2007.01.071

    Article  CAS  Google Scholar 

  60. Knoezinger H, Stuebner B (1978) Adsorption of alcohols on alumina. 1. Gravimetric and infrared spectroscopic investigation. J Phys Chem 82:1526–1532. https://doi.org/10.1021/j100502a013

    Article  CAS  Google Scholar 

  61. Janik MJ, Macht J, Iglesia E, Neurock M (2009) Correlating acid properties and catalytic function: a first-principles analysis of alcohol dehydration pathways on polyoxometalates. J Phys Chem C 113:1872–1885

    Article  CAS  Google Scholar 

  62. Bandyopadhyay M, Jadav D, Tsunoji N et al (2019) Immobilizaion of Preyssler type heteropoly acids on siliceous mesporous supports and their catalytic activities in the dehydration of ethanol. Reac Kinet Mech Cat 128:139–147. https://doi.org/10.1007/s11144-019-01646-1

    Article  CAS  Google Scholar 

  63. Holclajtner-Antunović I, Uskoković-Marković S, Popa A et al (2019) Ethanol dehydration over Keggin type tungstophosphoric acid and its potassium salts supported on carbon. Reac Kinet Mech Cat 128:121–137. https://doi.org/10.1007/s11144-019-01625-6

    Article  CAS  Google Scholar 

  64. Zaki T (2005) Catalytic dehydration of ethanol using transition metal oxide catalysts. J Colloid Interface Sci 284:606–613. https://doi.org/10.1016/J.JCIS.2004.10.048

    Article  CAS  PubMed  Google Scholar 

  65. Lai S, She Y, Zhan W et al (2016) Performance of Fe-ZSM-5 for selective catalytic reduction of NOx with NH3: effect of the atmosphere during the preparation of catalysts. J Mol Catal A 424:232–240. https://doi.org/10.1016/J.MOLCATA.2016.08.026

    Article  CAS  Google Scholar 

  66. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112:4094–4123

    Article  CAS  Google Scholar 

  67. Ferencz Z, Erdo A, Baa K et al (2014) Effects of support and Rh additive on Co-based catalysts in the ethanol steam reforming reaction. ACS Catal 4:1205–1218

    Article  CAS  Google Scholar 

  68. Tóth M, Varga E, Oszkó A et al (2016) Partial oxidation of ethanol on supported Rh catalysts: effect of the oxide support. J Mol Catal A 411:377–387. https://doi.org/10.1016/j.molcata.2015.11.010

    Article  CAS  Google Scholar 

  69. Szabó M, Halasi G, Sápi A et al (2019) Outstanding activity and selectivity of controlled size Pt nanoparticles over WO3 nanowires in ethanol decomposition reaction. J Nanosci Nanotechnol 19:478–483. https://doi.org/10.1166/jnn.2019.15783

    Article  CAS  PubMed  Google Scholar 

  70. Oudejans JC, Van Den Oosterkamp PF, Van Bekkum H (1982) Conversion of ethanol over zeolite h-zsm-5 in the presence of water. Appl Catal 3:109–115. https://doi.org/10.1016/0166-9834(82)80084-5

    Article  CAS  Google Scholar 

  71. Choopun W, Jitkarnka S (2016) Catalytic activity and stability of HZSM-5 zeolite and hierarchical uniform mesoporous MSU-SZSM-5 material during bio-ethanol dehydration. J Clean Prod 135:368–378. https://doi.org/10.1016/J.JCLEPRO.2016.06.110

    Article  CAS  Google Scholar 

  72. Phung TK, Proietti Hernández L, Lagazzo A, Busca G (2015) Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects. Appl Catal A. https://doi.org/10.1016/j.apcata.2014.12.047

    Article  Google Scholar 

  73. Zhan N, Hu Y, Li H et al (2010) Lanthanum–phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: a comparative analysis. Catal Commun 11:633–637. https://doi.org/10.1016/J.CATCOM.2010.01.011

    Article  CAS  Google Scholar 

  74. Zhang M, Yu Y (2013) Dehydration of ethanol to ethylene. Ind Eng Chem Res 52:9505–9514. https://doi.org/10.1021/ie401157c

    Article  CAS  Google Scholar 

  75. Rollmann LD, Valyocsik EW, Shannon RD (1973) In: Holt SL (ed) Wiley, NJ, 22:67–68. https://doi.org/10.1002/9783527645329

  76. Crystallography Open Database. https://www.crystallography.net/cod/result.php

  77. Che M, Védrine JC (2012) Characterization of solid materials and heterogeneous catalysts: from structure to surface reactivity. Wiley, Hoboken

    Book  Google Scholar 

  78. Popova M, Djinović P, Ristić A et al (2018) Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Bi-functional Ni/HZSM-5 catalyst. Front Chem 6:285

    Article  Google Scholar 

  79. Thermo ScientificTM AvantageTM Data System for XPS XPS Reference Table of Elements. https://xpssimplified.com/periodictable.php

  80. Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 600:1771–1779. https://doi.org/10.1016/J.SUSC.2006.01.041

    Article  CAS  Google Scholar 

  81. Pan Q, Ramanathan A, Snavely WK et al (2014) Intrinsic kinetics of ethanol dehydration over Lewis acidic ordered mesoporous silicate, Zr-KIT-6. Top Catal 57:1407–1411. https://doi.org/10.1007/s11244

    Article  CAS  Google Scholar 

  82. Phung TK, Proietti Hernández L, Busca G (2015) Conversion of ethanol over transition metal oxide catalysts: effect of tungsta addition on catalytic behaviour of titania and zirconia. Appl Catal A 489:180–187. https://doi.org/10.1016/J.APCATA.2014.10.025

    Article  CAS  Google Scholar 

  83. de Oliveira TKR, Rosset M, Perez-Lopez OW (2018) Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catal Commun 104:32–36. https://doi.org/10.1016/J.CATCOM.2017.10.013

    Article  Google Scholar 

Download references

Acknowledgements

The first author, Dayaram T. Sarve, is thankful to the Director of the Visvesvaraya National Institute of Technology, Nagpur, for providing the necessary facilities and financial support. We are thankful to IIT Madras for providing the TPD facility, NCL Pune for providing the XPS facility and BITS Pilani-Hyderabad for providing the BET-BJH facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunit Kumar Singh or Jayant D. Ekhe.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest and conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarve, D.T., Singh, S.K. & Ekhe, J.D. Kinetic and mechanistic study of ethanol dehydration to diethyl ether over Ni-ZSM-5 in a closed batch reactor. Reac Kinet Mech Cat 131, 261–281 (2020). https://doi.org/10.1007/s11144-020-01847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01847-z

Keywords

Navigation