Antiproliferative and apoptosis-inducing activity of an oxidovanadium(IV) complex with the flavonoid silibinin against osteosarcoma cells

  • I. E. Leon
  • V. Porro
  • A. L. Di Virgilio
  • L. G. Naso
  • P. A. M. Williams
  • M. Bollati-Fogolín
  • S. B. EtcheverryEmail author
Original Paper


Flavonoids are a large family of polyphenolic compounds synthesized by plants. They display interesting biological effects mainly related to their antioxidant properties. On the other hand, vanadium compounds also exhibit different biological and pharmacological effects in cell culture and in animal models. Since coordination of ligands to metals can improve or change the pharmacological properties, we report herein, for the first time, a detailed study of the mechanisms of action of an oxidovanadium(IV) complex with the flavonoid silibinin, Na2[VO(silibinin)2]·6H2O (VOsil), in a model of the human osteosarcoma derived cell line MG-63. The complex inhibited the viability of osteosarcoma cells in a dose-dependent manner with a greater potency than that of silibinin and oxidovanadium(IV) (p < 0.01), demonstrating the benefit of complexation. Cytotoxicity and genotoxicity studies also showed a concentration effect for VOsil. The increase in the levels of reactive oxygen species and the decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of the complex. Besides, the complex caused cell cycle arrest and activated caspase 3, triggering apoptosis as determined by flow cytometry. As a whole, these results show the main mechanisms of the deleterious effects of VOsil in the osteosarcoma cell line, demonstrating that this complex is a promising compound for cancer treatments.

Graphical abstract


Anticancer drug MG-63 human osteosarcoma cells Mechanisms of action Flavonoids Vanadium 



This work was partly supported by UNLP (11X/554), CONICET (PIP 1125), and ANPCyT (PICT 2008-2218 and PICT-2010-0981) from Argentina. A.L.D.V.and S.B.E. are members of the Carrera del Investigador, CONICET, Argentina. P.A.M.W. is member of the Carrera del Investigador, CIC, and PBA. I.E.L. has a fellowship from ANPCyT, Argentina, and a fellowship from AMSUD- PASTEUR, Institut Pasteur, Uruguay. L.G.N. has a postdoctoral fellowship from CONICET, Argentina. V.P. and M.B.F. are members of the Sistema Nacional de Investigadores of the Agencia Nacional de Investigación e Innovación in Uruguay. The authors would like to thank Inés Tiscornia for the management work with the cells and Miguel Reigosa for help with the PMBC assay. Moreover, the authors would like to thank M.C. Bernal for her careful revision of the manuscript.

Supplementary material

775_2013_1061_MOESM1_ESM.pdf (60 kb)
Supplementary material 1 (PDF 59 kb)


  1. 1.
    Beecher GR (2003) J Nutr 133:3248S–3254SPubMedGoogle Scholar
  2. 2.
    Ferrer EG, Williams PAM (2011) Modification of flavonoid structure by oxovanadium(IV) complexation. Biological effects. In: Yamane K, Kato Y (eds) Handbook on flavonoids: dietary sources, properties and health benefits. Nova, Hauppauge, pp 145–190Google Scholar
  3. 3.
    Kima JD, Liub L, Guob W, Meydani M (2006) J Nutr Biochem 17:165–176CrossRefGoogle Scholar
  4. 4.
    Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  5. 5.
    Gazák R, Walterova D, Kren V (2007) Curr Med Chem 14:315–338PubMedCrossRefGoogle Scholar
  6. 6.
    Svagera Z, Skottová N, Vána P, Vecera R, Urbánek K, Belejová M, Kosina P, Simánek V (2003) Phytother Res 17:524–530PubMedCrossRefGoogle Scholar
  7. 7.
    Varga Z, Czompa A, Kakuk G, Antus A (2001) Phytother Res 15:608–612PubMedCrossRefGoogle Scholar
  8. 8.
    Ge Y, Zhang Y, Chen Y, Li Q, Chen J, Dong Y, Shi W (2011) Int J Mol Sci 12:4861–4871PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Agarwal C, Wadhwa R, Deep G, Biedermann D, Gažák R, Křen V, Agarwal R (2013) PLoS One 8:e60074. doi: 10.1371/journal.pone.0060074 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Singh RP, Agarwal R (2004) Curr Cancer Drug Targets 4:1–11PubMedCrossRefGoogle Scholar
  11. 11.
    Mokhtari MJ, Motamed N, Shokrgozar MA (2008) Cell Biol Int 32:888–892PubMedCrossRefGoogle Scholar
  12. 12.
    Bhatia N, Zhao J, Wolf DM, Agarwala R (1999) Cancer Lett 147:77–84PubMedCrossRefGoogle Scholar
  13. 13.
    Hogan FS, Krishnegowda NK, Mikhailova M, Kahlenberg MS (2007) J Surg Res 143:58–65PubMedCrossRefGoogle Scholar
  14. 14.
    Kauntz H, Bousserouel S, Gosse F, Marescaux J, Raul F (2012) Int J Oncol 41:849–854PubMedGoogle Scholar
  15. 15.
    Kauntz H, Bousserouel S, Gosse F, Raul F (2013) Oncol Lett 5:1273–1277PubMedCentralPubMedGoogle Scholar
  16. 16.
    Naso LG, Ferrer EG, Butenko N, Cavaco I, Lezama L, Rojo T, Etcheverry SB, William PAM (2011) J Biol Inorg Chem 16:653–668PubMedCrossRefGoogle Scholar
  17. 17.
    Kuntić V, Filipović I, Vujić Z (2011) Molecules 16:1378–1388PubMedCrossRefGoogle Scholar
  18. 18.
    Leon IE, Di Virgilio AL, Porro V, Muglia CI, Naso LG, Williams PAM, Bollati-Fogolin M, Etcheverry SB (2013) Dalton Trans 42:11868–11880PubMedCrossRefGoogle Scholar
  19. 19.
    Nielsen FH (1995) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vanadium and its role in life. Dekker, New York, pp 543–574Google Scholar
  20. 20.
    Slebodnicj C, Hamstra BJ, Pecoraro VL (1997) Struct Bonding 89:51–107CrossRefGoogle Scholar
  21. 21.
    Srivastava K, Mehdi MZ (2004) Diabetic Med 22:2–13CrossRefGoogle Scholar
  22. 22.
    Cortizo AM, Etcheverry SB (1995) Mol Cell Biochem 145:97–102PubMedCrossRefGoogle Scholar
  23. 23.
    Etcheverry SB, Barrio DA (2007) In: Kustin K, Costa Pesoa J, Crans DC (eds) Vanadium: the versatile metal. ACS symposium series, vol 974. American Chemical Society, Washington, pp 204–216Google Scholar
  24. 24.
    Djordjevic C, Wampler GL (1985) J Inorg Biochem 25:51–55PubMedCrossRefGoogle Scholar
  25. 25.
    Evangelou AM (2002) Crit Rev Oncol Hematol 42:249–265PubMedCrossRefGoogle Scholar
  26. 26.
    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Am J Med 113:71–88CrossRefGoogle Scholar
  27. 27.
    Bhuiyan MS, Fukunaga K (2009) J Pharmacol Sci 110:1–13PubMedCrossRefGoogle Scholar
  28. 28.
    Shioda N, Han F, Fukunaga K (2009) Int Rev Neurobiol 85:375–387PubMedGoogle Scholar
  29. 29.
    Etcheverry SB, Williams PAM (2009) New developments in medicinal chemistry. In: Ortega MP, Gil IC (eds) Medicinal chemistry of copper and vanadium bioactive compounds. Nova, Hauppauge, pp 105–129Google Scholar
  30. 30.
    Barrio DA, Etcheverry SB (2010) Curr Med Chem 17:3632–3642PubMedCrossRefGoogle Scholar
  31. 31.
    Djordjevic C (1995) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vanadium and its role in life. Dekker, New York, pp 595–616Google Scholar
  32. 32.
    Mohseny AB, Pancras CW, Hogendoorn CW, Cleton-Jansen AM (2012) Sarcoma. doi: 10.1155/2012/417271 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) J Immunol Methods 139:271–280PubMedCrossRefGoogle Scholar
  34. 34.
    Okajima T, Nakamura H, Zhang Y, Ling N, Tanabe T, Yasuda T, Rosenfeld RG (1992) Endocrinology 130:2201–2212PubMedCrossRefGoogle Scholar
  35. 35.
    Borenfreund E, Puerner JA (1984) J Tissue Cult Methods 9:7–9CrossRefGoogle Scholar
  36. 36.
    Mosmann T T (1983) J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  37. 37.
    Fenech M (2000) Mutat Res 455:81–95PubMedCrossRefGoogle Scholar
  38. 38.
    Fenech M (1993) Mutat Res 1:35–44CrossRefGoogle Scholar
  39. 39.
    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) Exp Cell Res 1988(175):184–191CrossRefGoogle Scholar
  40. 40.
    Cortizo AM, Bruzzone L, Molinuevo MS, Etcheverry SB (2000) Toxicology 147:89–99PubMedCrossRefGoogle Scholar
  41. 41.
    Hissin PJ, Hilf R (1976) Anal Biochem 74:214–226PubMedCrossRefGoogle Scholar
  42. 42.
    Bradford M (1976) Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  43. 43.
    Hurley AA (2001) Curr Protoc Cytom 7.2.1–7.2.5Google Scholar
  44. 44.
    Pozarowski P, Grabarek J, Darzynkiewicz Z (2003) Curr Protoc Cytom 25:7.19.1–7.19.33Google Scholar
  45. 45.
    Stopper H, Muller SO (1997) Toxicol In Vitro 11:661–667PubMedCrossRefGoogle Scholar
  46. 46.
    Collins AR, Dobson VL, Dusinka M, Kennedy G, Stetina R (1997) Mut Res 375:183–193Google Scholar
  47. 47.
    Liao W, Nutt MA, Zhu MG (2009) Methods 48:46–53PubMedCrossRefGoogle Scholar
  48. 48.
    Leon IE, Di Virgilio AL, Barrio DA, Arrambide G, Gambino D, Etcheverry SB (2012) Metallomics 4:1287–1296PubMedCrossRefGoogle Scholar
  49. 49.
    Rivadeneira J, Di Virgilio AL, Barrio DA, Muglia CI, Bruzzone L, Etcheverry SB (2010) Med Chem 6:9–23PubMedCrossRefGoogle Scholar
  50. 50.
    Ye J, Ding M, Leonard SS, Robinson VA, Millecchia L, Zhang X, Castranova V, Vallyathan V, Shi X (1999) Mol Cell Biochem 202:9–17PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, Shi X (2001) Arch Biochem Biophys 392:311–332PubMedCrossRefGoogle Scholar
  52. 52.
    Capella MAM, Capella LS, Valente RC, Gefe′ M, Lopes AG (2007) Cell Biol Toxicol 23:413–420PubMedCrossRefGoogle Scholar
  53. 53.
    Jones DP, Carlson JL, Mody VC, Cai JY, Lynn MJ, Sternberg P (2000) Free Radic Biol Med 28:625–635PubMedCrossRefGoogle Scholar
  54. 54.
    Hwang C, Sinskey AJ, Lodish HF (1992) Science 57:1496–1502CrossRefGoogle Scholar
  55. 55.
    Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA (1995) Nature 376:37–43PubMedCrossRefGoogle Scholar
  56. 56.
    Sakahira H, Enari M, Nagata S (1998) Nature 391:96–99PubMedCrossRefGoogle Scholar
  57. 57.
    Kamada S, Kusano H, Fujita H, Ohtsu M, Koya RC, Kuzumaki N, Tsujimoto Y (1998) Proc Natl Acad Sci USA 95:8532–8537PubMedCrossRefGoogle Scholar
  58. 58.
    Porter AG, Janicke RU (1999) Cell Death Differ 6:99–104PubMedCrossRefGoogle Scholar
  59. 59.
    Sherr CJ (2000) Cancer Res 60:3695–3698Google Scholar
  60. 60.
    Kerr JFR, Wyllie AH, Curie AR (1972) Br J Cancer 26:239–257PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Arends MJ, Morris RG, Wyllie AH (1990) Am J Pathol 136:593–608PubMedGoogle Scholar
  62. 62.
    Nagata S (2000) Exp Cell Res 256:12–18PubMedCrossRefGoogle Scholar
  63. 63.
    Umansky SR, Korol BA, Nelipovich PA (1981) Biochim Biophys Acta 655:9–17PubMedCrossRefGoogle Scholar
  64. 64.
    Ottaviani G, Jaffe N (2009) The epidemiology of osteosarcoma. In: Jaffe N et al (eds) Pediatric and adolescent osteosarcoma. Springer, New YorkGoogle Scholar
  65. 65.
    Strianese M, Basile A, Mazzone A, Morello S, Turco MC, Pellecchia C (2013) J Cell Physiol 228:2202–2209PubMedCrossRefGoogle Scholar
  66. 66.
    Rodriguez-Mercado JJ, Mateos-Nava RA, Altamirano-Lozano MA (2011) Toxicol In Vitro 25:1996–2002PubMedCrossRefGoogle Scholar
  67. 67.
    Di Virgilio AL, Rivadeneira J, Muglia CI, Reigosa MA, Butenko N, Cavaco I, Etcheverry SB (2011) Biometals 24:1153–1168PubMedCrossRefGoogle Scholar
  68. 68.
    Villani P, Cordelli PE, Leopardo P, Siniscalchi E, Veschetti E, Fresegna AM, Crebelli R (2007) Toxicol Lett 170:11–18PubMedCrossRefGoogle Scholar
  69. 69.
    Wang CC, Chiang YM, Sung SC, Hsu YL, Chang JK, Kuo PL (2008) Cancer Lett 259:82–98PubMedCrossRefGoogle Scholar
  70. 70.
    Baumgartner HK, Gerasimenko JV, Thorne C, Ashurst LH, Barrow SL, Chvanov MA, Gillies S, Criddle DN, Tepikin AV, Petersen OH, Sutton R, Watson AJM, Gerasimenko OV (2007) Am J Physiol Gastrointest Liver Physiol 293:296–307CrossRefGoogle Scholar
  71. 71.
    Valko M, Morris H, Cronin MT (2005) Curr Med Chem 12:1161–1208PubMedCrossRefGoogle Scholar
  72. 72.
    Saxena AK, Srivastava P, Kale RK, Baquer NZ (1993) Biochem Pharmacol 45:539–542PubMedCrossRefGoogle Scholar
  73. 73.
    Sabbioni E, Pozzi G, Devos S, Pintar A, Casella L, Fischbach M (1993) Carcinogenesis 14:2565–2568PubMedCrossRefGoogle Scholar
  74. 74.
    Gonçalves AP, Videira A, Soares P, Maximo V (2011) Life Sci 12:11–12Google Scholar
  75. 75.
    Montiel-Davalos A, Gonzalez-Villava A, Rodriguez-Lara V, Montano LF, Fortoul TI, Lopez-Marure R (2012) J Appl Toxicol 32:26–33PubMedCrossRefGoogle Scholar
  76. 76.
    Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K (2010) J Inorg Biochem 104:371–378PubMedCrossRefGoogle Scholar
  77. 77.
    Rivadeneira J, Barrio DA, Arrambide G, Gambino D, Bruzzone L, Etcheverry SB (2009) J Inorg Biochem 103:633–642PubMedCrossRefGoogle Scholar
  78. 78.
    Hosseini MJ, Seyedrazi N, Shahraki J, Pourahmad J (2012) Adv Biosci Biotechnol 3:1096–1103CrossRefGoogle Scholar
  79. 79.
    Afeseh Ngwa H, Kanthasamy A, Anantharam V, Song C, Witte T, Houk R, Kanthasamy AG (2009) Toxicol Appl Pharmacol 240:273–285PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Ray RS, Rana B, Swami B, Venu V, Chatterjee M (2006) Chem Biol Interact 163:239–247PubMedCrossRefGoogle Scholar
  81. 81.
    Fu Y, Wang Q, Yang XG, Yang XD, Wang K (2008) J Biol Inorg Chem 13:1001–1009PubMedCrossRefGoogle Scholar

Copyright information

© SBIC 2013

Authors and Affiliations

  • I. E. Leon
    • 1
    • 2
  • V. Porro
    • 3
  • A. L. Di Virgilio
    • 1
    • 2
  • L. G. Naso
    • 2
  • P. A. M. Williams
    • 2
  • M. Bollati-Fogolín
    • 3
  • S. B. Etcheverry
    • 1
    • 2
    Email author
  1. 1.Catedra de Bioquímica Patológica, Facultad Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Centro de Química Inorgánica (CEQUINOR) Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Unidad de Biología CelularInstitut Pasteur de MontevideoMontevideoUruguay

Personalised recommendations