Skip to main content
Log in

Antioxidant, DNA cleavage, and cellular effects of silibinin and a new oxovanadium(IV)/silibinin complex

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A new complex of the oxovanadium(IV) cation with the flavolignan silibinin has been synthesized and characterized. Vanadium compounds show interesting biological and pharmacological properties and some of them display antitumoral actions. Flavonoids are part of a larger group of antioxidant compounds called polyphenols which may inhibit the proliferation and growth of cancer cells. The antioxidant and antitumoral effects of silibinin and its oxovanadium(IV) complex were investigated. Silibinin acted as a very strong antioxidant and its complexation with oxovanadium(IV) improved this behavior. Besides, the generation of reactive oxygen species (ROS) by this compound was favored in tumoral (UMR106) cells and correlated with the deleterious behavior in the proliferation of this cell line. Conversely, silibinin did not exert any effect on the proliferation of normal osteoblasts (MC3T3E1). The cytotoxic action and ROS generation of the oxovanadium(IV) complex was more effective in tumoral cells. This behavior was not consistent with cleaving DNA of plasmid DNA pA1 because no significant cleaving activity was observed in both cases. These results suggest that the main deleterious mechanisms may take place through cytotoxic effects more than genotoxic actions. A comparison with our own findings on the behavior of other flavonoids and their vanadyl(IV) complex has also been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-Azobis(2-methylpropionamidine) dihydrochloride

ABTS:

2,2′-Azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt

AGE:

Agarose gel electrophoresi

bp:

Base pair

DHR:

Dihydrorhodamine

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

DPPH· :

1,1-Diphenyl-2-picrylhydrazyl

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

FTIR:

Fourier transform infrared

MOPS:

3-(N-Morpholino)propanesulfonic acid

MPA:

Mercaptopropionic acid

NADH:

Reduced nicotinamide adenine dinucleotide

NBT:

Nitroblue tetrazolium

ORAC:

Oxygen radical absorbance capacity

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TEAC:

Trolox-equivalent antioxidant coefficient

VOsil:

Na2[VO(silibinin)2]·6H2O

References

  1. Gazák R, Walterová D, Kren V (2007) Curr Med Chem 14:315–338

    Article  PubMed  Google Scholar 

  2. Svagera Z, Skottová N, Vána P, Vecera R, Urbánek K, Belejová M, Kosina P, Simánek V (2003) Phytother Res 17:524–530

    Article  PubMed  CAS  Google Scholar 

  3. Varga Z, Czompa A, Kakuk G, Antus A (2001) Phytother Res 15:608–612

    Article  PubMed  CAS  Google Scholar 

  4. Singh RP, Agarwal R (2004) Curr Cancer Drug Targets 4:1–11

    Article  PubMed  CAS  Google Scholar 

  5. Mokhtari MJ, Motamed N, Shokrgozar MA (2008) Cell Biol Int 32:888–892

    Article  PubMed  CAS  Google Scholar 

  6. Bhatia N, Zhao J, Wolf DM, Agarwala R (1999) Cancer Lett 147:77–84

    Article  PubMed  CAS  Google Scholar 

  7. Hogan FS, Krishnegowda NK, Mikhailova M, Kahlenberg MS (2007) J Surg Res 143:58–65

    Article  PubMed  CAS  Google Scholar 

  8. Mascher H, Kikuta C, Weyhemmeyer R (1993) J Liq Chromatogr 16:2777–2789

    Article  CAS  Google Scholar 

  9. Arcari M, Brambilla A, Brandt A, Caponi R, Corsi G, Di Rella M, Solinas F (1992) Boll Chim Farm 131:205–209

    PubMed  CAS  Google Scholar 

  10. Yang LX, Huang KX, Li HB, Gong JX, Wang F, Feng YB, Tao QF, Wu YH, Li XK, Wu XM, Zeng S, Spencer S, Zhao Y, Qu J (2009) J Med Chem 52:7732–7752

    Article  PubMed  CAS  Google Scholar 

  11. Evangelou AM (2002) Crit Rev Oncol Hematol 42:249–265

    Article  PubMed  Google Scholar 

  12. Etcheverry SB, Williams PAM (2009) New developments in medicinal chemistry. In: Ortega MP, Gil IC (eds) Medicinal chemistry of copper and vanadium bioactive compounds. Nova Science, Hauppauge, pp 105–129

    Google Scholar 

  13. Onishi M (1988) Photometric determination of traces of metals, part II, 4th edn. Wiley, New York

    Google Scholar 

  14. Yamaguchi T, Takamura H, Matoba TC, Terao J (1998) Biosci Biotechnol Biochem 62:1201–1204

    Article  PubMed  CAS  Google Scholar 

  15. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radic Biol Med 26:1231–1237

    Article  PubMed  CAS  Google Scholar 

  16. Gorinstein S, Moncheva S, Katrich E, Toledo F, Arancibia P, Goshev I, Trakhtenberg S (2003) Mar Pollut Bull 46:1317–1325

    Article  PubMed  CAS  Google Scholar 

  17. Kuo CC, Shih M, Kuo Y, Chiang W (2001) J Agric Food Chem 49:1564–1570

    Article  PubMed  CAS  Google Scholar 

  18. Halliwell B, Gutteridge JMC, Aruoma OI (1987) Anal Biochem 165:215–219

    Article  PubMed  CAS  Google Scholar 

  19. Zhong Z, Ji X, Xing R, Liu S, Guo Z, Chen X, Li P (2007) Bioorg Med Chem 15:3775–3782

    Article  PubMed  CAS  Google Scholar 

  20. Tijerina Sáenz A, Elisia I, Innis SM, Friel JK, Kitts DD (2009) J Food Compost Anal 22:694–698

    Article  Google Scholar 

  21. Zulueta A, Esteve MJ, Frívola A (2009) Food Chem 114:310–316

    Article  CAS  Google Scholar 

  22. Fisher MB, Thompson SJ, Ribeiro V, Lechner MC, Rettie A (1998) Arch Biochem Biophys 356:63–70

    Article  PubMed  CAS  Google Scholar 

  23. Cortizo AM, Etcheverry SB (1995) Mol Cell Biochem 145:97–102

    Article  PubMed  CAS  Google Scholar 

  24. Krejsa CM, Nadler SG, Esselstyn JM, Kavanagh TJ, Ledbetter JA, Schieven GL (1997) J Biol Chem 272:11541–11549

    Article  PubMed  CAS  Google Scholar 

  25. Bradford M (1976) Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  26. Sálice VC, Cortizo AM, Gómez Dumm CL, Etcheverry SB (1999) Mol Cell Biochem 198:119–128

    Article  PubMed  Google Scholar 

  27. Ferrer EG, Salinas MV, Correa MJ, Naso L, Barrio DA, Etcheverry SB, Lezama L, Rojo T, Williams PAM (2006) J Biol Inorg Chem 11:791–801

    Article  PubMed  CAS  Google Scholar 

  28. Levchenko LA, Kartsev VG, Sadkov AP, Shestakov AF, Shilova AK, Shilov AE (2007) Dokl Chem 412(2):35–37

    Google Scholar 

  29. Borsaria M, Gabbia C, Ghelfia F, Grandia R, Saladinia M, Severi S, Borell F (2001) J Inorg Biochem 85:123–129

    Article  Google Scholar 

  30. Harris WR, Raymond KN (1979) J Am Chem Soc 101:6534–6541

    Article  CAS  Google Scholar 

  31. Popescu CM, Singure G, Popescu MC, Vasile C, Argyropoulos DS, Willför S (2009) Carbohydr Polym 77:851–857

    Article  CAS  Google Scholar 

  32. Chasteen ND (1981) In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 3. Plenum, New York

    Google Scholar 

  33. Naso L, Ferrer EG, Lezama L, Rojo T, Etcheverry SB, Williams PAM (2010) J Biol Inorg Chem 15:889–902

    Article  PubMed  CAS  Google Scholar 

  34. Meloun M, Burkonová D, Syrový T, Vrána A (2003) Anal Chim Acta 486:125–141

    Article  CAS  Google Scholar 

  35. Kang J, Zhuo L, Lu X, Liu H, Zhang M, Wu H (2004) J Inorg Biochem 98:79–86

    Article  PubMed  CAS  Google Scholar 

  36. Gazák R, Svobodová A, Psotová J, Sedmera P, Prikrylová V, Walterová D, Kren V (2004) Bioorg Med Chem 12:5677–5687

    Article  PubMed  Google Scholar 

  37. Etcheverry SB, Ferrer EG, Naso L, Rivadeneira J, Salinas V, Williams PAM (2008) J Biol Inorg Chem 13:435–447

    Article  PubMed  CAS  Google Scholar 

  38. Okawa M, Kinjo J, Nohara T, Ono M (2001) Biol Pharm Bull 24:1202–1205

    Article  PubMed  CAS  Google Scholar 

  39. Köksal E, Gülcn l, Beyza S, Sarikaya Ö, Bursal E (2009) J Enzyme Inhib Med Chem 24:395–405

    Article  PubMed  Google Scholar 

  40. Cao G, Sofic E, Prior RL (1997) Free Radic Biol Med 22:749–760

    Article  PubMed  CAS  Google Scholar 

  41. Trouillas P, Marsal P, Svobodová A, Vostálová J, Gazák R, Hrbác J, Sedmera P, Kren V, Lazzaroni R, Duroux JL, Walterová D (2008) J Phys Chem A 112:1054–1063

    Article  PubMed  CAS  Google Scholar 

  42. György I, Antus S, Földiak G (1992) Radiat Phys Chem 39:81–84

    Google Scholar 

  43. Kren V, Kubisch J, Sedmera P, Halada P, Prikrylová V, Jegorov A, Cvak L, Gebhardt R, Ulrichová H, Simánek V (1997) J Chem Soc Perkin Trans 1:2467–2474

    Google Scholar 

  44. Kren V, Ulrichová J, Kosina P, Stevenson D, Sedmera P, Prikrylová V, Halada P, Imánek VS (2000) Drug Met Dispos 28:1513–1517

    CAS  Google Scholar 

  45. Costa Pessoa J, Cavaco I, Correia I, Tomaz I, Adão P, Vale I, Ribeiro V, Castro MMCA, Geraldes CCFG (2007) In: Kustin K, Costa Pessoa J, Crans DC (eds) Vanadium: the versatile metal. ACS symposium series, vol 974. American Chemical Society, Washington, pp 340–351

  46. Butenko N, Tomaz AI, Nouri O, Escribano E, Moreno V, Gama S, Ribeiro V, Telo JP, Costa Pessoa J, Cavaco I (2009) J Inorg Biochem 103:622–632

    Article  PubMed  CAS  Google Scholar 

  47. Capella MAM, Capella LS, Valente RC, Gefé M, Lopes AG (2007) Cell Biol Toxicol 23:413–420

    Article  PubMed  CAS  Google Scholar 

  48. Ferreira JFS, Luthria DL, Sasaki T, Heyerick A (2010) Molecules 15:3135–3170

    Article  PubMed  CAS  Google Scholar 

  49. Pittella UF, Dutra RC, Junior DD, Lopes MTP, Barbosa NR (2009) Int J Mol Sci 10:3713–3721

    Article  PubMed  CAS  Google Scholar 

  50. de Pohlit Almeida Telles P, Macari CN, Portela AM (2006) Acta Amazon 36:513–518

    Google Scholar 

  51. Sharma RJ, Chaphalkar SR, Adsool AD (2010) Int J Biotechnol 2:01–05

    Google Scholar 

  52. Moein S, Farzami B, Khaghani S, Moein MR, Larijani B (2007) DARU 15:83–88

    CAS  Google Scholar 

  53. Jeong JM, Kang SK, Lee IH, Lee JY, Jung H, Choi CH (2007) J Pharm Pharm Sci 10:537–546

    CAS  Google Scholar 

  54. Wang Q, Liu T, Fu Y, Wang K, Yang X (2010) J Biol Inorg Chem 15:1087–1097

    Article  PubMed  CAS  Google Scholar 

  55. Chen YT, Zheng RL, Jia ZJ, Ju Y (1990) Free Radic Biol Med 9:19–21

    Article  PubMed  Google Scholar 

  56. Wilms LC, Jos CS, Kleinjans EJC, Moonen J, Briede J (2008) Toxicol In Vitro 22:301–307

    Article  PubMed  CAS  Google Scholar 

  57. Sakao K, Fujii M, Hou DX (2009) Biosci Biotechnol Biochem 73:2048–2053

    Article  PubMed  CAS  Google Scholar 

  58. Galati G, O’Brien PJ (2004) Free Radic Biol Med 37:287–303

    Article  PubMed  CAS  Google Scholar 

  59. Srinivasan P, Vadhanam MV, Arif JM, Gupta RC (2002) Int J Oncol 20:983–986

    PubMed  CAS  Google Scholar 

  60. Tobi SE, Gilbert M, Paul N, McMillan TJ (2002) Int J Cancer 102:439–444

    Article  PubMed  CAS  Google Scholar 

  61. Mladěnka P, Zatloukalová L, Filipský T, Hrdina R (2010) Free Radic Biol Med 49:963–975

    Article  PubMed  Google Scholar 

  62. Barrio DA, Williams PAM, Cortizo AM, Etcheverry SB (2003) J Biol Inorg Chem 8:459–468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by UNLP, CONICET (PIP1125), ANPCyT (PICT 2008-2218), and CICPBA. E.G.F. and S.B.E. are members of the Carrera del Investigador CONICET. P.A.M.W. is a member of the Carrera del Investigador CICPBA, Argentina. L.N. holds a fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. M. Williams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2011_769_MOESM1_ESM.pdf

Figure S1. Agarose gel electrophoresis of plasmid DNA after digestion with VOsil, with and without activating agents. Solutions were buffered at pH 7.0 with MOPS. Lanes 1, 11 – controls for native DNA; 2, 10 - controls for linearized DNA (after digestion with VO(acac)2 50μM under phosphate buffer); 3 – VOsil 25 μM; 4 – VOsil 50 μM; 5 – VOsil 50μM + MPA; 6 – VOsil 50 μM + oxone; 7, 8 – controls for MPA and oxone, respectively; 9 – digestion with silibinin 100 μM. The graphic shows the percentage of each form of DNA (Sc – supercoiled, Nck – nicked, Lin – linear) obtained from the gel by densitometry. (PDF 95 kb)

775_2011_769_MOESM2_ESM.pdf

Figure S2. - Agarose gel electrophoresis of plasmid DNA after digestion with VOsil, with increasing complex concentration and in the presence of activating agents. Solutions were buffered at pH 7.0 with phosphate buffer. Lane 1 – control for native DNA; 2 – control for linearized DNA (after digestion with VO(acac)2 50μM under phosphate buffer); 3 - VOsil 6 μM; 4 - VOsil 12 μM; 5 - VOsil 25 μM; 6 - VOsil 50 μM; 7 - VOsil 50 μM + MPA; 8 – VOsil 50 μM + oxone; 9, 10 – controls for MPA and oxone, respectively; 11 – digestion with silibinin 100 μM. The graphic shows the percentage of each form of DNA (Sc – supercoiled, Nck – nicked, Lin – linear) obtained from the gel by densitometry. (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naso, L.G., Ferrer, E.G., Butenko, N. et al. Antioxidant, DNA cleavage, and cellular effects of silibinin and a new oxovanadium(IV)/silibinin complex. J Biol Inorg Chem 16, 653–668 (2011). https://doi.org/10.1007/s00775-011-0769-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0769-8

Keywords

Navigation