Skip to main content
Log in

Unlocking the therapeutic potential of cinchonains: a comprehensive review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Cinchonains are a group of naturally occurring flavonolignans that exhibit a plethora of biological activities. This comprehensive review provides a critical analysis of the research on cinchonains and their related compounds, aiming to describe their various biological activities, including but not limited to, cytotoxicity, antioxidant, anti-inflammatory, antimicrobial, neuroprotective, antidiabetic, and anticancer activities. The occurrence and distribution of cinchonains in plants, their biosynthesis pathways, bioavailability, toxicity, and clinical investigations are also discussed. By synthesizing information from scientific literature, we present an informative and accessible overview of cinchonains' potential as a source of new therapeutics and highlight the importance of continued research on cinchonains and their related compounds to unlock their possible therapeutic merits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abouelela ME, Orabi MAA, Abdelhamid RA, Abdelkader MSA, Darwish FMM, Hotsumi M, Konno H (2020a) Anti-Alzheimer’s flavanolignans from Ceiba pentandra aerial parts. Fitoterapia 143:104541. https://doi.org/10.1016/j.fitote.2020.104541

    Article  CAS  PubMed  Google Scholar 

  • Abouelela ME, Orabi MAA, Abdelhamid RA, Abdelkader MS, Madkor HR, Darwish FMM, Hatano T, Elsadek BEM (2020b) Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. Reduces methotrexate-induced renal damage in rats via antioxidant, anti-inflammatory, and antiapoptotic actions. J Trad Complement Med 10(5):478–486. https://doi.org/10.1016/j.jtcme.2019.08.006

    Article  Google Scholar 

  • Aburjai T, Hudaib M, Tayyem R, Yousef M, Qishawi M (2007) Ethnopharmacological survey of medicinal herbs in Jordan, the Ajloun Heights region. J Ethnopharmacol 110(2):294–304

    Article  PubMed  Google Scholar 

  • Andrade C, Ferreres F, Gomes NG, Duangsrisai S, Srisombat N, Vajrodaya S, Pereira DM, Gil-Izquierdo A, Andrade PB, Valentão P (2019) Phenolic profiling and biological potential of Ficus curtipes corner leaves and stem bark: 5-lipoxygenase inhibition and interference with NO levels in LPS-stimulated RAW 264.7 macrophages. Biomolecules 9(9):400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annaz H, El Fakhouri K, Ben Bakrim W, Mahdi I, El Bouhssini M, Sobeh M (2023) Bergamotenes: a comprehensive compile of their natural occurrence, biosynthesis, toxicity, therapeutic merits and agricultural applications. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2023.2184766

    Article  PubMed  Google Scholar 

  • Annaz H, Sane Y, Bitchagno GTM, Ben Bakrim W, Drissi B, Mahdi I, El Bouhssini M, Sobeh M (2022) Caper (Capparis spinosa L.): an updated review on its phytochemistry, nutritional value, traditional uses, and therapeutic potential. Front Pharmacol 13:878749. https://doi.org/10.3389/fphar.2022.878749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ao C, Higa T, Khanh TD, Upadhyay A, Tawata S (2011) Antioxidant phenolic compounds from Smilax sebeana Miq. LWT Food Sci Technol 44(7):1681–1686. https://doi.org/10.1016/j.lwt.2011.02.001

    Article  CAS  Google Scholar 

  • Awale S, Tezuka Y, Wang S, Kadota S (2002) Facile and regioselective synthesis of phenylpropanoid-substituted flavan-3-ols. Org Lett 4(10):1707–1709

    Article  CAS  PubMed  Google Scholar 

  • Bakrim WB, Nurcahyanti ADR, Dmirieh M, Mahdi I, Elgamal AM, El Raey MA, Wink M, Sobeh M (2022) Phytochemical profiling of the leaf extract of Ximenia americana var. Caffra and Its antioxidant, antibacterial, and antiaging activities in vitro and in caenorhabditis elegans : a cosmeceutical and dermatological approach. Oxid Med Cell Longev 2022:3486257. https://doi.org/10.1155/2022/3486257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM (2017) Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res 196:44–68. https://doi.org/10.1016/j.micres.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  • Bekker M, Bekker R, Brandt VE (2006) Two flavonoid glycosides and a miscellaneous flavan from the bark of Guibourtia coleosperma. Phytochemistry 67(8):818–823

    Article  CAS  PubMed  Google Scholar 

  • Beltrame FL, Rodrigues Filho E, Barros FAP, Cortez DA, Cass QB (2006) A validated higher-performance liquid chromatography method for quantification of cinchonain Ib in bark and phytopharmaceuticals of Trichilia catigua used as Catuaba. J Chromatogr A 1119(1–2):257–263

    Article  CAS  PubMed  Google Scholar 

  • Bitchagno GTM, Nchiozem-Ngnitedem V-A, Melchert D, Fobofou SA (2022) Demystifying racemic natural products in the homochiral world. Nat Rev Chem 6(11):806–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloomgarden ZT (2004) Diabetes complications. Diabetes Care 27(6):1506–1514. https://doi.org/10.2337/diacare.27.6.1506

    Article  PubMed  Google Scholar 

  • Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Alicia IY, Mahboob T, Tangpoong J, Nissapatorn V (2018) Recommended medicinal plants as source of natural products: a review. Digit Chin Med 1(2):131–142

    Article  Google Scholar 

  • Brahmi-Chendouh N, Piccolella S, Crescente G, Pacifico F, Boulekbache L, Hamri-Zeghichi S, Akkal S, Madani K, Pacifico S (2019) A nutraceutical extract from Inula viscosa leaves: UHPLC-HR-MS/MS based polyphenol profile, and antioxidant and cytotoxic activities. J Food Drug Anal 27(3):692–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cham BT, Linh NTT, Anh NTH, Quan TD, Tam NT, Thien DD, Nhung LTH, Van Sung T, Son NT, Delfino DV (2020) Chemical constituents of Peltophorum pterocarpum stems. Vietnam J Chem 58(4):569–574

    Article  CAS  Google Scholar 

  • Chandrasekar R, Sivagami B, Babu MN (2018) A pharmacoeconomic focus on medicinal plants with anticancer activity. Res J Pharmacognosy Phytochem 10(1):91–100. https://doi.org/10.5958/0975-4385.2018.00015.8

    Article  Google Scholar 

  • Chatterjee M, Saluja R, Kanneganti S, Chinta S, Dikshit M (2007) Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cell Mol Biol (noisy-Le-Grand) 53(1):84–93

    CAS  PubMed  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717

    Article  PubMed  PubMed Central  Google Scholar 

  • Daina A, Zoete V (2016) A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11(11):1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Marchi F, De Rosso M, Flamini R (2022) Coupling between high-resolution mass spectrometry and focalized data-analysis methods provides the identification of new putative glycosidic non-anthocyanic flavonoids in grape. Metabolomics 18(6):37

    Article  PubMed  Google Scholar 

  • de Carvalho Junior AR, Oliveira Ferreira R, de Souza Passos M, da Silva Boeno SI, Glória das Virgens de L, Ventura TLB, Calixto SD, Lassounskaia E, de Carvalho MG and Braz-Filho R (2019) Antimycobacterial and nitric oxide production inhibitory activities of triterpenes and alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra. Molecules, 24(6):1026

  • Del Castillo-Llamosas A, Rodríguez-Martínez B, Del Río PG, Eibes G, Garrote G, Gullón B (2021) Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. Biores Technol 342:125981

    Article  Google Scholar 

  • Dutt R, Garg V, Khatri N, Madan AK (2019) Phytochemicals in anticancer drug development. Anti-Cancer Agents Med Chem (form Curr Med Chem-Anti-Cancer Agents) 19(2):172–183. https://doi.org/10.2174/1871520618666181106115802

    Article  CAS  Google Scholar 

  • Embaby MA, El-Raey MA, Zaineldain M, Almaghrabi O, Marrez DA (2021) Synergistic effect and efflux pump inhibitory activity of Ficus nitida phenolic extract with tetracycline against some pathogenic bacteria. Toxin Rev 40(4):1187–1197

    Article  CAS  Google Scholar 

  • Facino RM, Carini M, Aldini G, De Angelis L (1997) A rapid screening by liquid chromatography/mass spectrometry and fast-atom bombardment tandem mass spectrometry of phenolic constituents with radical scavenging activity, from Krameria triandra roots. Rapid Commun Mass Spectrom 11(12):1303–1308

    Article  CAS  Google Scholar 

  • Fan W, Tezuka Y, Xiong Q, Hattori M, Namba T, Kadota S (1999) Apocynins A-D: new Phenylpropanoid-substituted Flavan-3-ols Isolated from Leaves of Apocynum venetum (Luobuma-Ye). Chem Pharm Bull-Tokyo 47:1049–1050

    Article  CAS  Google Scholar 

  • Fan Y, Duan W, Luo Y, Song L, Chen J, Xie Y, Hou L (2015) Preparative separation and purification of two flavanols from Smilax china L. using high-speed counter-current chromatography. Eur Food Res Technol 240:33–39

    Article  CAS  Google Scholar 

  • Fasciotti M, Alberici RM, Cabral EC, Cunha VS, Silva PR, Daroda RJ, Eberlin MN (2015) Wood chemotaxonomy via ESI-MS profiles of phytochemical markers: the challenging case of African versus Brazilian mahogany woods. Anal Methods 7(20):8576–8583

    Article  CAS  Google Scholar 

  • Feng H, He Y, La L, Hou C, Song L, Yang Q, Wu F, Liu W, Hou L, Li Y (2020) The flavonoid-enriched extract from the root of Smilax china L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway. J Ethnopharmacol 256:112785

    Article  CAS  PubMed  Google Scholar 

  • Foo LY (1987) Phenylpropanoid derivatives of catechin, epicatechin and phylloflavan from Phyllocladus trichomanoides. Phytochemistry 26(10):2825–2830

    Article  CAS  Google Scholar 

  • Fukunishi Y, Kurosawa T, Mikami Y, Nakamura H (2014) Prediction of synthetic accessibility based on commercially available compound databases. J Chem Inf Model 54(12):3259–3267

    Article  CAS  PubMed  Google Scholar 

  • Fürst R, Zündorf I (2014) Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediat Inflamm 2014:146832. https://doi.org/10.1155/2014/146832

    Article  CAS  Google Scholar 

  • Gao R, Xiong S, Zhang T, Deng X, Li J, Liao M (2020) Two new quinic acid derivatives from the fruits of Chaenomeles speciosa. Biochem Syst Ecol 93:104167

    Article  CAS  Google Scholar 

  • Garle MJ, Fentem JH, Fry JR (1994) In vitro cytotoxicity tests for the prediction of acute toxicity in vivo. Toxicol Vitro 8(6):1303–1312. https://doi.org/10.1016/0887-2333(94)90123-6

    Article  CAS  Google Scholar 

  • Gey KF (1986) On the antioxidant hypothesis with regard to arteriosclerosis1. In Forum of Nutrition (p 53-91). https://doi.org/10.1159/000412175

  • Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 10(5):499–502. https://doi.org/10.1242/dmm.030205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes AF, Moreira BO, Yatsuda R, de Souza ÉP, David JM, Alves CQ, de Macedo GE, de Correia SJ, de Paula VF (2021) Chemical constituents, antioxidant, anti-inflammatory and antinociceptive activities of Trichilia ramalhoi. Nat Product Res 35(22):4789–4793. https://doi.org/10.1080/14786419.2020.1723088

    Article  CAS  Google Scholar 

  • Gu W, Li N, Leung EL, Zhou H, Yao X, Liu L, Wu J (2015) Rapid identification of new minor chemical constituents from Smilacis Glabrae Rhizoma by combined use of UHPLC-Q-TOF-MS, preparative HPLC and UHPLC-SPE-NMR-MS techniques. Phytochem Anal 26(6):428–435

    Article  CAS  PubMed  Google Scholar 

  • Hokkanen J, Mattila S, Jaakola L, Pirttilä AM, Tolonen A (2009) Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J Agric Food Chem 57(20):9437–9447

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Qiao Y, Lin S, Jiang Y, Chen F (2008) Characterization of antioxidant compounds in Eriobotrya fragrans Champ leaf. Sci Hortic 118(4):288–292. https://doi.org/10.1016/j.scienta.2008.06.018

    Article  CAS  Google Scholar 

  • Hsu F, Nonaka G, Nishioka I (1985) Tannins and related compounds. XXXI. Isolation and characterization of proanthocyanidins in Kandelia candel (L.) Druce. Chem Pharm Bull 33(8):3142–3152

    Article  CAS  Google Scholar 

  • Hsu F-L, Tsai Y-J, Kao M-C, Chen C-F (1993) Antihepatotoxic activity of phenolic Flavan-3-ols and their derivatives. Am J Chin Med 21(01):45–50. https://doi.org/10.1142/S0192415X93000066

    Article  CAS  PubMed  Google Scholar 

  • Hsue-Fen C, Tanaka T, Nonaka G-I, Fujioka T, Mihashi K (1993) Phenylpropanoid-substituted catechins from Castanopsis hystrix and structure revision of cinchonains. Phytochemistry 33(1):183–187

    Article  Google Scholar 

  • Huang L, Wang Z-M, Wang S-S, Wang Y-H, Li H-J, Wu Y-C (2022) Environmentally benign cinchonain IIa from Uncaria laevigata for corrosion inhibition of Q235 steel in HCl corrosive medium: experimental and theoretical investigation. Environ Res 215:114376

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Luo H, Ma Q, Peng H, Dai H, Zhou J, Zhao Y (2014) Chemical constituents from the stems of Excoecaria acertiflia. Chem Biodivers 11(9):1406–1416

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-L, Matsuo Y, Tanaka T, Kouno I, Li D-P, Nonaka G (2011) New phenylpropanoid-substitutod Flavan-3-ols from the Leaves of Castanopsis sclerophylla. Heterocycles 83(10):2321

    Article  CAS  Google Scholar 

  • Huang Y-L, Tanaka T, Matsuo Y, Kouno I, Li D-P, Nonaka G-I (2012) Two new phenolic glucosides and an ellagitannin from the leaves of Castanopsis sclerophylla. Phytochem Lett 5(1):158–161

    Article  CAS  Google Scholar 

  • Ichikawa T, Sugamoto K, Matsuura Y, Kunitake H, Shimoda K, Morishita K (2022) Inhibition of adult T-cell leukemia cell proliferation by polymerized proanthocyanidin from blueberry leaves through JAK proteolysis. Cancer Sci 113(4):1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Kobayashi E, Takamatsu Y, Li S-H, Hatano T, Sakagami H, Kusama K, Satoh K, Sugita D, Shimura S (2000) Polyphenols from Eriobotrya japonica and their cytotoxicity against human oral tumor cell lines. Chem Pharm Bull 48(5):687–693

    Article  CAS  Google Scholar 

  • Jindal AK, Pandya K, Khan ID (2015) Antimicrobial resistance: a public health challenge. Med J Arm Forces India 71(2):178–181. https://doi.org/10.1016/j.mjafi.2014.04.011

    Article  CAS  Google Scholar 

  • Kamdem JP, Stefanello ST, Boligon AA, Wagner C, Kade IJ, Pereira RP, Preste ADS, Roos DH, Waczuk EP, Appel AS (2012) In vitro antioxidant activity of stem bark of Trichilia catigua Adr. Juss Acta Pharm 62(3):371–382. https://doi.org/10.2478/v10007-012-0026-x

    Article  CAS  PubMed  Google Scholar 

  • Khare T, Anand U, Dey A, Assaraf YG, Chen Z-S, Liu Z, Kumar V (2021) Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front Pharmacol. https://doi.org/10.3389/fphar.2021.720726

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YC (2010) Neuroprotective phenolics in medicinal plants. Arch Pharmacal Res 33(10):1611–1632. https://doi.org/10.1007/s12272-010-1011-x

    Article  CAS  Google Scholar 

  • Kowa TK, Tchokouaha LRY, Cieckiewicz E, Philips TJ, Dotse E, Wabo HK, Tchinda AT, Tane P, Frédérich M (2020) Antileishmanial and cytotoxic activities of a new limonoid and a new phenyl alkene from the stem bark of Trichilia gilgiana (Meliaceae). Nat Prod Res 34(22):3182–3188. https://doi.org/10.1080/14786419.2018.1553879

    Article  CAS  PubMed  Google Scholar 

  • Kumar GP, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacognosy Rev 6(12):81. https://doi.org/10.4103/0973-7847.99898

    Article  CAS  Google Scholar 

  • Lee TH, Lee CH, Ong PY, Wong SL, Hamdan N, Ya’akob H, Azmi NA, Khoo SC, Zakaria ZA, Cheng K-K (2022) Comparison of extraction methods of phytochemical compounds from white flower variety of Melastoma malabathricum. South Afr J Bot 148:170–179

    Article  CAS  Google Scholar 

  • Li D-L, Li X-M, Peng Z-Y, Wang B-G (2007) Flavanol derivatives from Rhizophora stylosa and their DPPH radical scavenging activity. Molecules 12(5):1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Coleman CM, Wu H, Burandt CL Jr, Ferreira D, Zjawiony JK (2013) Triterpenoids and flavonoids from Cecropia schreberiana Miq.(Urticaceae). Biochem Syst Ecol 48:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C-S, Cham T-M, Yang C-H, Chang H-W, Chen C-H, Chuang L-Y (2007) Antibacterial properties of chinese herbal medicines against nosocomial antibiotic resistant strains of pseudomonas aeruginosa in Taiwan. Am J Chin Med 35(06):1047–1060. https://doi.org/10.1142/S0192415X07005508

    Article  PubMed  Google Scholar 

  • Long L, Yang Q, Wang L, Chen J, Hou L, Hou C-q, Liu W-q (2022) UFLC-Q-TOF-MS/S-based of identification of components in Smilax China L. and its anti-inflammatory activities. Available at SSRN: https://ssrn.com/abstract=4231215 or https://doi.org/10.2139/ssrn.4231215

  • Lopez A, Hudson JB, Towers GHN (2001) Antiviral and antimicrobial activities of Colombian medicinal plants. J Ethnopharmacol 77(2):189–196. https://doi.org/10.1016/S0378-8741(01)00292-6

    Article  CAS  PubMed  Google Scholar 

  • Mahdi I, Bakrim WB, Bitchagno GTM, Annaz H, Mahmoud MF, Sobeh M (2022) Unraveling the phytochemistry, traditional uses, and biological and pharmacological activities of thymus algeriensis Boiss. & Reut. Oxid Med Cell Long. https://doi.org/10.1155/2022/6487430

    Article  Google Scholar 

  • Mamun-or-Rashid A, Hossain MS, Hassan N, Dash BK, Sapon MA, Sen MK (2014) A review on medicinal plants with antidiabetic activity. J Pharmacognosy Phytochem 3(4):149–159

    Google Scholar 

  • Martins NO, de Brito IM, Araújo SSO, Negri G, de Carlini E, A., & Mendes, F. R. (2018) Antioxidant, anticholinesterase and antifatigue effects of Trichilia catigua (catuaba). BMC Complement Altern Med 18(1):172. https://doi.org/10.1186/s12906-018-2222-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo Y, Fujita Y, Ohnishi S, Tanaka T, Hirabaru H, Kai T, Sakaida H, Nishizono S, Kouno I (2010) Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages. Food Chem 121(4):1073–1079

    Article  CAS  Google Scholar 

  • Mejías FJ, Durán AG, Zorrilla JG, Varela RM, Molinillo JM, Valdivia MM, Macías FA (2021) Acyl derivatives of eudesmanolides to boost their bioactivity: an explanation of behavior in the cell membrane using a molecular dynamics approach. ChemMedChem 16(8):1297–1307

    Article  PubMed  Google Scholar 

  • Wink M (2022) Current understanding of modes of action of multicomponent bioactive phytochemicals : potential for nutraceuticals and antimicrobials. Annu Rev Food Sci Technol 13(6):6–23

    Google Scholar 

  • Ming DS, López A, Hillhouse BJ, French CJ, Hudson JB, Towers GHN (2002) Bioactive constituents from Iryanthera megistophylla. J Nat Prod 65(10):1412–1416. https://doi.org/10.1021/np020169l

    Article  CAS  PubMed  Google Scholar 

  • Mitsuru S, Yoshio S, Yasuo F (2000) Cytotoxic constituents from Erythroxylum catuaba isolation and cytotoxic activities of cinchonain. Nat Med 生薬学雑誌, 54(2):97–100

  • Mollica A, Zengin G, Sinan KI, Marletta M, Pieretti S, Stefanucci A, Etienne OK, Jekő J, Cziáky Z, Bahadori MB (2022) A study on chemical characterization and biological abilities of Alstonia boonei extracts obtained by different techniques. Antioxidants 11(11):2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno E, Gabano E, Torres E, Platts JA, Ravera M, Aldana I, Monge A, Pérez-Silanes S (2011) Studies on Log Po/w of quinoxaline di-N-oxides : a comparison of RP-HPLC experimental and predictive approaches. Molecules 16(9):9. https://doi.org/10.3390/molecules16097893

    Article  CAS  Google Scholar 

  • Müller L, Weever F, Hübner F, Humpf H-U, Esselen M (2021) Characterization of oligomeric proanthocyanidin-enriched Fractions from Aronia melanocarpa (Michx.) Elliott via high-resolution mass spectrometry and investigations on their inhibitory potential on human topoisomerases. J Agric Food Chem 69(37):11053–11064

    Article  PubMed  Google Scholar 

  • Mutungi MM, Muema FW, Kimutai F, Xu Y-B, Zhang H, Chen G-L, Guo M-Q (2021) Antioxidant and antiproliferative potentials of Ficus glumosa and Its Bioactive Polyphenol Metabolites. Pharmaceuticals 14(3):266

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro Hoyos M, Sánchez-Patán F, Murillo Masis R, Martín-Álvarez PJ, Zamora Ramirez W, Monagas MJ, Bartolomé B (2015) Phenolic assesment of Uncaria tomentosa L.(Cat’s Claw): leaves, stem, bark and wood extracts. Molecules 20(12):22703–22717

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawrot-Hadzik I, Granica S, Abel R, Czapor-Irzabek H and Matkowski A (2017) Analysis of antioxidant polyphenols in loquat leaves using HPLC-based activity profiling. Nat Prod Commun 12(2):1934578X1701200205

  • Ney Osvaldo Silva JrIrineu Tadeu VelascoAugusto Scalabrini NetoLuiz Pianowski (2011) Pharmaceutical composition comprising cinchonain ia and ib, process for preparing an epimeric mixture of cinchonain ia and ib, use and method for reversing / combating ventricular fibrillation (Patent No BRPI0904460A2)

  • Noleto-Dias C, Harflett C, Beale MH, Ward JL (2020) Sulfated flavanones and dihydroflavonols from willow. Phytochem Lett 35:88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka G, Kawahara O, Nishioka I (1982) Tannins and related compounds VIII A new type of proanthocyanidin, cinchonains IIa and IIb from Cinchona succirubra. (2). Chem Pharm Bull 30(12):4277–4282

    Article  CAS  Google Scholar 

  • Olszewska MA, Kolodziejczyk-Czepas J, Rutkowska M, Magiera A, Michel P, Rejman MW, Nowak P, and Owczarek A (2019) The effect of standardised flower extracts of Sorbus aucuparia L. on proinflammatory enzymes, multiple oxidants, and oxidative/nitrative damage of human plasma components in vitro. Oxid Med Cell Long. https://doi.org/10.1155/2019/9746358

  • Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci: IJBS 4(2):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizzolatti MG, Venson AF, Júnior AS, Smânia de EFA and Braz-Filho R (2002) Two epimeric flavalignans from Trichilia catigua (Meliaceae) with Antimicrobial Activity. 57(5-6):483–488. https://doi.org/10.1515/znc-2002-5-614

  • Qa’dan F, Verspohl EJ, Nahrstedt A, Petereit F, Matalka KZ (2009) Cinchonain Ib isolated from Eriobotrya japonica induces insulin secretion in vitro and in vivo. J Ethnopharmacol 124(2):224–227

    Article  PubMed  Google Scholar 

  • Radziejewska-Kubzdela E, Szwengiel A, Ratajkiewicz H, Nowak K (2020) Effect of ultrasound, heating and enzymatic pre-treatment on bioactive compounds in juice from Berberis amurensis Rupr. Ultrason Sonochem 63:104971

    Article  CAS  PubMed  Google Scholar 

  • Resende FO, Rodrigues-Filho E, Luftmann H, Petereit F, de Mello JCP (2011) Phenylpropanoid substituted flavan-3-ols from Trichilia catigua and their in vitro antioxidative activity. J Braz Chem Soc. https://doi.org/10.1590/S0103-50532011001100010

    Article  Google Scholar 

  • Ribeiro DA, Damasceno SS, Boligon AA, de Menezes IRA, de Souza MMA, da Costa JGM (2017) Chemical profile and antimicrobial activity of Secondatia floribunda A DC (Apocynaceae). Asian Pac J Trop Biomed 7(8):739–749. https://doi.org/10.1016/j.apjtb.2017.07.009

    Article  Google Scholar 

  • Salekeen R, Mou SN, Islam ME, Ahmed A, Billah MM, Rahman SM, Islam KMD (2022) Predicting multi-enzyme inhibition in the arachidonic acid metabolic network by Heritiera fomes extracts. J Biomol Struct Dyn 40(9):4259–4272

    Article  CAS  PubMed  Google Scholar 

  • Satoh M, Satoh Y, and Fujimoto Y (2000) Cytotoxic constituents from Erythroxylum catuaba isolation and cytotoxic activities of cinchonain. Nat Med 生薬学雑誌, 54(2):97–100

  • Schmidt CA, Murillo R, Bruhn T, Bringmann G, Goettert M, Heinzmann B, Brecht V, Laufer SA, Merfort I (2010) Catechin derivatives from Parapiptadenia rigida with in vitro wound-healing properties. J Nat Prod 73(12):2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Sendker J, Petereit F, Lautenschläger M, Hellenbrand N, Hensel A (2013) Phenylpropanoid-substituted procyanidins and tentatively identified procyanidin glycosides from hawthorn (Crataegus spp.). Planta Med 79(01):45–51

    CAS  PubMed  Google Scholar 

  • Singab AN, Youssef FS, Ashour ML (2014) Medicinal plants with potential antidiabetic activity and their assessment. Med Aromat Plants 3(151):2167–2412

    Google Scholar 

  • Sobeh M, El-Raey M, Rezq S, Abdelfattah MAO, Petruk G, Osman S, El-Shazly AM, El-Beshbishy HA, Mahmoud MF, Wink M (2019) Chemical profiling of secondary metabolites of Eugenia uniflora and their antioxidant, anti-inflammatory, pain killing and anti-diabetic activities: a comprehensive approach. J Ethnopharmacol 240:111939. https://doi.org/10.1016/j.jep.2019.111939

    Article  CAS  PubMed  Google Scholar 

  • Sobeh M, Mahmoud MF, Sabry OM, Adel R, Dmirieh M, El-Shazly AM, Wink M (2017) HPLC-PDA-MS/MS characterization of bioactive secondary metabolites from Turraea fischeri bark extract and its antioxidant and hepatoprotective activities in vivo. Molecules 22(12):2089

    Article  PubMed  PubMed Central  Google Scholar 

  • Solowey E, Lichtenstein M, Sallon S, Paavilainen H, Solowey E, Lorberboum-Galski H (2014) Evaluating medicinal plants for anticancer activity. Sci World J 2014:721402. https://doi.org/10.1155/2014/721402

    Article  Google Scholar 

  • Sugamoto K, Tanaka YL, Saito A, Goto Y, Nakayama T, Okabayashi T, Kunitake H, Morishita K (2022) Highly polymerized proanthocyanidins (PAC) components from blueberry leaf and stem significantly inhibit SARS-CoV-2 infection via inhibition of ACE2 and viral 3CLpro enzymes. Biochem Biophys Res Commun 615:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Chen L, Xu J, Qu W, Guan L, Liu W, Akihisa T, Feng F, Zhang J (2017) Melanogenesis-inhibitory and antioxidant activities of Phenolics from Periploca forrestii. Chem Biodivers 14(8):e1700083

    Article  Google Scholar 

  • Svahn S (2015) Analysis of secondary metabolites from Aspergillus fumigatus and Penicillium nalgiovense: antimicrobial compounds from Filamentous Fungi isolated from extreme environments (Doctoral dissertation, Acta Universitatis Upsaliensis)

  • Symma N, Sendker J, Petereit F, Hensel A (2020) Multistep analysis of Diol-LC-ESI-HRMS data reveals proanthocyanidin composition of complex plant extracts (PAComics). J Agric Food Chem 68(30):8040–8049

    Article  CAS  PubMed  Google Scholar 

  • Tabanca N, Bedir E, Kirimer N, Baser KHC, Khan SI, Jacob MR, Khan IA (2003) Antimicrobial compounds from Pimpinella species growing in Turkey. Planta Med 69(10):933–938. https://doi.org/10.1055/s-2003-45103

    Article  CAS  PubMed  Google Scholar 

  • Tabanca N, Pawar RS, Ferreira D, Marais JP, Khan SI, Joshi V, Wedge DE, Khan IA (2007) Flavan-3-ol-phenylpropanoid conjugates from Anemopaegma arvense and their antioxidant activities. Planta Med 73(10):1107–1111. https://doi.org/10.1055/s-2007-981563

    Article  CAS  PubMed  Google Scholar 

  • Takara K, Kuniyoshi A, Wada K, Kinjyo K, Iwasaki H (2008) Antioxidative flavan-3-ol glycosides from stems of Rhizophora stylosa. Biosci Biotechnol Biochem 72(8):2191–2194

    Article  CAS  PubMed  Google Scholar 

  • Tang T, Zuo L, Na Z, Xu Y (2012) Chemical constituents from stems of Dysoxylum laxiracemosum. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J Chin Materia Med 37(9):1237–1240

    CAS  Google Scholar 

  • Tang W, Hioki H, Harada K, Kubo M, Fukuyama Y (2007) Antioxidant Phenylpropanoid-Substituted Epicatechins from Trichilia catigua. J Nat Prod 70(12):2010–2013. https://doi.org/10.1021/np0703895

    Article  CAS  PubMed  Google Scholar 

  • Tangá W, Hiokiá H, Haradaá K (2007) Etá al. Antioxidant phenylpropanoidsubstituted epicatechins from Trichilia catigua. J Nat Prod 70:2010–2013

    Article  Google Scholar 

  • Uchino T, Kawahara N, Sekita S, Satake M, Saito Y, Tokunaga H, Ando M (2004) Potent protecting effects of catuaba (Anemopaegma mirandum) extracts against hydroperoxide-induced cytotoxicity. Toxicol in Vitro 18(3):255–263

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  • van Wyk B-E, Wink M (2015) Phytomedicines, herbal drugs, and poisons. University of Chicago Press

    Google Scholar 

  • Vilkickyte G, Petrikaite V, Pukalskas A, Sipailiene A, Raudone L (2022) Exploring Vaccinium vitis-idaea L. as a potential source of therapeutic agents: antimicrobial, antioxidant, and anti-inflammatory activities of extracts and fractions. J Ethnopharmacol 292:115207

    Article  CAS  PubMed  Google Scholar 

  • Wan C, Yuan T, Cirello AL, Seeram NP (2012) Antioxidant and α-glucosidase inhibitory phenolics isolated from highbush blueberry flowers. Food Chem 135(3):1929–1937

    Article  CAS  PubMed  Google Scholar 

  • Watanabe J, Kawabata J, Kurihara H, Niki R (1997) Isolation and identification of α-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci Biotechnol Biochem 61(1):177–178

    Article  CAS  PubMed  Google Scholar 

  • Wirth C, Wagner H (1997) Pharmacologically active procyanidines from the bark of Uncaria tomentosa. Phytomed Int J Phytother Phytopharmacol 4(3):265–266. https://doi.org/10.1016/S0944-7113(97)80079-7

    Article  CAS  Google Scholar 

  • Wungsintaweekul B, Umehara K, Miyase T, Noguchi H (2011) Estrogenic and anti-estrogenic compounds from the Thai medicinal plant, Smilax corbularia (Smilacaceae). Phytochemistry 72(6):495–502

    Article  CAS  PubMed  Google Scholar 

  • Xiang M, Hu Y, He F, Liu X (2015) Chemical composition of n-Butanol Fraction from Polygonum amplexicaule var. Sinense. Zhong Yao Cai Zhongyaocai J Chin Med Mater 38(9):1872–1874

    CAS  Google Scholar 

  • Xiong Q, Fan W, Tezuka Y, Adnyana IK, Stampoulis P, Hattori M, Namba T, Kadota S (2000) Hepatoprotective effect of Apocynum venetum and its active constituents. Planta Med 66(02):127–133

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Hu M-J, Wang Y-Q, Cui Y-L (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24(6):1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Shang M-Y, Liu G-X, Xu F, Wang X, Shou C-C, Cai S-Q (2013) Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules 18(5):5265–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X-T, An Z, Huangfu Y, Zhang Y-T, Li C-H, Chen X, Liu P-L, Gao J-M (2019) Polycyclic polyprenylated acylphloroglucinol and phenolic metabolites from the aerial parts of Hypericum elatoides and their neuroprotective and anti-neuroinflammatory activities. Phytochemistry 159:65–74. https://doi.org/10.1016/j.phytochem.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Wahlqvist ML, He G, Yang M, and Li D (2006) Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr 15(2):143–152

  • Zayed A, Sobeh M, Farag MA (2022) Dissecting dietary and semisynthetic volatile phenylpropenes: a compile of their distribution, food properties, health effects, metabolism and toxicities. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2087175

    Article  PubMed  Google Scholar 

  • Zhang L, Tu Z, Xie X, Lu Y, Wang Z, Wang H, Sha X (2016) Antihyperglycemic, antioxidant activities of two Acer palmatum cultivars, and identification of phenolics profile by UPLC-QTOF-MS/MS: new natural sources of functional constituents. Ind Crops Prod 89:522–532

    Article  CAS  Google Scholar 

  • Zhong C, Hu D, Hou L-B, Song L-Y, Zhang Y-J, Xie Y, Tian L-W (2017) Phenolic compounds from the rhizomes of Smilax china L. and their anti-inflammatory activity. Molecules. https://doi.org/10.3390/molecules22040515

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou M (2017) Chemical constituents from rhizome of Smilax davidiana. Chin Trad Herb Drugs 24:5099–5104

  • Zhou Z-H, Zhang Y-J, Xu M, Yang C-R (2005) Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea. J Agric Food Chem 53(22):8614–8617

    Article  CAS  PubMed  Google Scholar 

  • 刘成航刘岱琳付山贺凌霜 (2018) Cinchonain Ib is in the application for the drug for preparing treatment inflammatory bowel disease (Patent No CN108159042A)

  • 刘成航王春雷付山 (2018) Cinchonain Ib is in the application for preparing prevention medicine for treating rheumatoid arthritis (Patent No CN108210491A)

Download references

Author information

Authors and Affiliations

Authors

Contributions

NF, IM, HA and GTMB reviewed the literature and wrote the original draft of the manuscript. MFM revised the manuscript. MS revised the manuscript, designed, and conceived the work.

Corresponding author

Correspondence to Mansour Sobeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahsi, N., Mahdi, I., Annaz, H. et al. Unlocking the therapeutic potential of cinchonains: a comprehensive review. Phytochem Rev (2024). https://doi.org/10.1007/s11101-024-09949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11101-024-09949-5

Keywords

Navigation