Skip to main content
Log in

Jacobians of \(W^{1,p}\) homeomorphisms, case \(p=[n/2]\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate a known problem whether a Sobolev homeomorphism between domains in \(\mathbb {R}^n\) can change sign of the Jacobian. The only case that remains open is when \(f\in W^{1,[n/2]}\), \(n\ge 4\). We prove that if \(n\ge 4\), and a sense-preserving homeomorphism f satisfies \(f\in W^{1,[n/2]}\), \(f^{-1}\in W^{1,n-[n/2]-1}\) and either f is Hölder continuous on almost all spheres of dimension [n / 2], or \(f^{-1}\) is Hölder continuous on almost all spheres of dimensions \(n-[n/2]-1\), then the Jacobian of f is non-negative, \(J_f\ge 0\), almost everywhere. This result is a consequence of a more general result proved in the paper. Here [x] stands for the greatest integer less than or equal to x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: An approximation lemma for \(W^{1,p}\) functions. In: Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986), pp. 1–5. Oxford University Press, New York (1988)

  2. Besov, O. V., Il’in, V. P., Nikol’skiĭ, S. M.: Integral representations of functions and imbedding theorems. Vol. II. Scripta Series in Mathematics. Edited by Mitchell H. Taibleson. V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto, Ont.-London (1979)

  3. Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106, 77–92 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Campbell, D., Hencl, S., Tengvall, V.: Approximation of \(W^{1, p}\) Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian. Adv. Math. 331, 748–829 (2018)

    Article  MathSciNet  Google Scholar 

  5. Černý, R.: Homeomorphism with zero Jacobian: sharp integrability of the derivative. J. Math. Anal. Appl. 373, 161–174 (2011)

    Article  MathSciNet  Google Scholar 

  6. Csörnyei, M., Hencl, S., Malý, J.: Homeomorphisms in the Sobolev space \(W^{1, n-1}\). J. Reine Angew. Math. 644, 221–235 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Calderón, A.-P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Stud. Math. 20, 171–225 (1961)

    Article  MathSciNet  Google Scholar 

  8. D’Onofrio, L., Hencl, S., Schiattarella, R.: Bi-Sobolev homeomorphism with zero Jacobian almost everywhere. Calc. Var. Partial Differ. Equ. 51, 139–170 (2014)

    Article  MathSciNet  Google Scholar 

  9. D’Onofrio, L., Sbordone, C., Schiattarella, R.: On the approximate differentiability of inverse maps. J. Fixed Point Theory Appl. 15, 473–499 (2014)

    Article  MathSciNet  Google Scholar 

  10. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, Revised edn. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  11. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. Oxford Lecture Series in Mathematics and its Applications, 2. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  12. Fusco, N., Moscariello, G., Sbordone, C.: The limit of \(W^{1,1}\) homeomorphisms with finite distortion. Calc. Var. Partial Differ. Equ. 33, 377–390 (2008)

    Article  Google Scholar 

  13. Gauss, J.C.F.: Nachlass zur Elektrodynamik. In: Werke, Band V, Georg Olms Verlag, Hildesheim, 1973 (reprint of the 1967 original)

  14. Gehring, F.W., Lehto, O.: On the total differentiability of functions of a complex variable. Ann. Acad. Sci. Fenn. Ser. A I(272), 1–9 (1959)

    MATH  Google Scholar 

  15. Goldstein, P., Hajłasz, P.: Topological obstructions to continuity of Orlicz–Sobolev mappings of finite distortion. Ann. Mat. Pura Appl. 198, 243–262 (2019)

    Article  MathSciNet  Google Scholar 

  16. Goldstein, P., Hajłasz, P.: Modulus of continuity of orientation preserving approximately differentiable homeomorphisms with a.e. negative Jacobian. Ann. Acad. Sci. Fenn. Math. 43, 147–170 (2018)

    Article  MathSciNet  Google Scholar 

  17. Goldstein, P., Hajłasz, P.: A measure and orientation preserving homeomorphism with approximate Jacobian equal \(-1\) almost everywhere. Arch. Ration. Mech. Anal. 225, 65–88 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Hajłasz, P., Malý, J.: Approximation in Sobolev spaces of nonlinear expressions involving the gradient. Ark. Mat. 40, 245–274 (2002)

    Article  MathSciNet  Google Scholar 

  20. Hencl, S.: Sobolev homeomorphism with zero Jacobian almost everywhere. J. Math. Pures Appl. 95, 444–458 (2011)

    Article  MathSciNet  Google Scholar 

  21. Hencl, S., Koskela, P.: Lectures on Mappings of Finite Distortion. Lecture Notes in Mathematics, 2096. Springer, Cham (2014)

    MATH  Google Scholar 

  22. Hencl, S., Koskela, P.: Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal. 180, 75–95 (2006)

    Article  MathSciNet  Google Scholar 

  23. Hencl, S., Koskela, P., Malý, J.: Regularity of the inverse of a Sobolev homeomorphism in space. Proc. R. Soc. Edinb. Sect. A 136, 1267–1285 (2006)

    Article  MathSciNet  Google Scholar 

  24. Hencl, S., Malý, J.: Jacobians of Sobolev homeomorphisms. Calc. Var. Partial Differ. Equ. 38, 233–242 (2010)

    Article  MathSciNet  Google Scholar 

  25. Hencl, S., Moscariello, G., Passarelli di Napoli, A., Sbordone, C.: Bi-Sobolev mappings and elliptic equations in the plane. J. Math. Anal. Appl. 355, 22–32 (2009)

    Article  MathSciNet  Google Scholar 

  26. Hencl, S., Vejnar, B.: Sobolev homeomorphism that cannot be approximated by diffeomorphisms in \(W^{1,1}\). Arch. Ration. Mech. Anal. 219, 183–202 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kervaire, M.: An interpretation of G. Whitehead’s generalization of H. Hopf’s invariant. Ann. Math. 69, 345–365 (1959)

    Article  MathSciNet  Google Scholar 

  28. Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics, 105. American Mathematical Society, Providence (2009)

    Google Scholar 

  29. Malý, J., Martio, O.: Lusin’s condition (N) and mappings of the class \(W^{1, n}\). J. Reine Angew. Math. 458, 19–36 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Menchoff, D.: Sur les différentielles totales des fonctions univalentes. Math. Ann. 105, 75–85 (1931)

    Article  MathSciNet  Google Scholar 

  31. Milnor, J. W.: Topology from the differentiable viewpoint. Based on notes by David W. Weaver. Revised reprint of the 1965 original. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ (1997)

  32. Oliva, M.: Bi-Sobolev homeomorphisms \(f\) with \(Df\) and \(Df^{-1}\) of low rank using laminates. Calc. Var. Partial Differ. Equ. 55(6), 135 (2016)

    Article  MathSciNet  Google Scholar 

  33. Onninen, J.: Regularity of the inverse of spatial mappings with finite distortion. Calc. Var. Partial Differ. Equ. 26, 331–341 (2006)

    Article  MathSciNet  Google Scholar 

  34. Outerelo, E., Ruiz, J.M.: Mapping Degree Theory. Graduate Studies in Mathematics, 108. American Mathematical Society, Providence (2009)

    Google Scholar 

  35. Pratelli, A.: On the bi-Sobolev planar homeomorphisms and their approximation. Nonlinear Anal. 154, 258–268 (2017)

    Article  MathSciNet  Google Scholar 

  36. Ricca, R.L., Nipoti, B.: Gauss’ linking number revisited. J. Knot Theory Ramif. 20(10), 1325–1343 (2011)

    Article  MathSciNet  Google Scholar 

  37. Schmitt, B. J., Winkler, M.: On embeddings between \(BV\) and \(W^{s,p}\). Lehrstuhl I für Mathematik, RWTH Aachen Preprint No. 6, (2000)

  38. Takács, L.: An increasing continuous singular function. Am. Math. Mon. 85, 35–37 (1978)

    Article  MathSciNet  Google Scholar 

  39. Triebel, H.: Theory of Function Spaces. (Reprint of 1983 edition.) Modern Birkhüser Classics. Birkhäuser/Springer Basel AG, Basel (2010)

    Chapter  Google Scholar 

  40. Zapadinskaya, A.: Hölder continuous Sobolev mappings and the Lusin N property. Ill. J. Math. 58, 585–591 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Jan Malý for providing us with a beautiful proof of Proposition 28. A few days before completion of this work we learned the sad news that Professor Bogdan Bojarski had passed away. He was the Ph.D. advisor of Piotr Hajłasz and an inspiration for both of us. We mourn his passing, and we dedicate this paper with deep respect to his memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Hajłasz.

Additional information

Communicated by L.Ambrosio.

In memoriam: Bogdan Bojarski (1931–2018).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P.G. was partially supported by National Science Center Grant No 2012/05/E/ST1/03232.

P.H. was supported by NSF Grant DMS-1800457.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, P., Hajłasz, P. Jacobians of \(W^{1,p}\) homeomorphisms, case \(p=[n/2]\). Calc. Var. 58, 122 (2019). https://doi.org/10.1007/s00526-019-1554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1554-8

Mathematics Subject Classification

Navigation