Skip to main content
Log in

Sobolev Homeomorphism that Cannot be Approximated by Diffeomorphisms in W1,1

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We construct a Sobolev homeomorphism in dimension \({n \geqq 4,\,f \in W^{1,1}((0, 1)^n,\mathbb{R}^n)}\) such that \({J_f = {\rm det} Df > 0}\) on a set of positive measure and J f  < 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) f k such that \({f_k\to f}\) in \({W^{1,1}_{\rm loc}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Acerbi E., Fusco N.: Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86, 125–145 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000

  3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. In: Arch. Rat. Mech. Anal. 63, 337–403 (1977)

  4. Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A 306(1496), 557–611 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Ball, J.M.: Singularities and computation of minimizers for variational problems. In: Foundations of Computational Mathematics, Oxford, 1999, pp. 1–20, London Math. Soc. Lecture Note Ser., vol. 284. Cambridge Univ. Press, Cambridge, 2001

  6. Ball, J.M.: Progress and puzzles in nonlinear elasticity. Proceedings of course on Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM Courses and Lectures. Springer, Berlin, 2010

  7. Bellido J.C., Mora-Corral C.: Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms. Houston J. Math. 37(2), 449–500 (2011)

    MATH  MathSciNet  Google Scholar 

  8. Bing R.H.: Locally tame sets are tame. Ann. Math. 59, 145–158 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bing R.H.: Stable homeomorphisms on E 5 can be approximated by piecewise linear ones. Not. Am. Math. Soc. 10, 607–616 (1963)

    Google Scholar 

  10. Černý R.: Homeomorphism with zero Jacobian: Sharp integrability of the derivative. J. Math. Anal. Appl 373, 161–174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Connell E.H.: Approximating stable homeomorphisms by piecewise linear ones. Ann. Math. 78, 326–338 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  12. Daneri, S., Pratelli, A.: Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(3), 567–589 (2014)

  13. Daneri, S., Pratelli, A.: A planar bi-Lipschitz extension theorem. Adv. Calc. Var. 2014 (to appear)

  14. Donaldson S.K., Sullivan D.P.: Quasiconformal 4-manifolds. Acta Math. 163, 181–252 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. D’Onofrio L., Hencl S., Schiattarella R.: Bi-Sobolev homeomorphism with zero Jacobian almost everywhere. Calc. Var. PDE 51, 139–170 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Evans L.C.: Quasiconvexity and partial regularity in the calculus of variations. Ann. Math. 95(3), 227–252 (1986)

    MATH  MathSciNet  Google Scholar 

  17. Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. Clarendon Press, Oxford, 1995

  18. Goldstein, P., Hajlasz, P.: An Orientation-Preserving Homeomorphism of a Cube may have a.e. Negative Jacobian, 2013 (preprint)

  19. Hencl S.: Sobolev homeomorphism with zero Jacobian almost everywhere. J. Math. Pures Appl. 95, 444–458 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hencl, S., Koskela, P.: Lectures on mappings of finite distortion. In: Lecture Notes in Mathematics, vol. 2096. Springer, Berlin, 2014

  21. Hencl S., Malý J.: Jacobians of Sobolev homeomorphisms. Calc. Var. Par. Differ. Equ. 38, 233–242 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hencl, S., Pratelli, A.: Diffeomorphic Approximation of W 1,1 Planar Sobolev Homeomorphism., 2015 (preprint)

  23. Iwaniec, T., Martin, G.: Geometric function theory and nonlinear analysis. In: Oxford Mathematical Monographs. Clarendon Press, Oxford, 2001

  24. Iwaniec, T., Onninen, J.: Limits of Sobolev homeomorphisms. J. Eur. Math. Soc. 2014 (preprint)

  25. Iwaniec T., Kovalev L.V., Onninen J.: Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Rat. Mech. Anal. 201(3), 1047–1067 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Iwaniec T., Kovalev L.V., Onninen J.: Hopf Differentials and smoothing Sobolev homeomorphisms. Int. Math. Res. Not. 14, 3256–3277 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Iwaniec, T., Onninen, J.: Monotone Sobolev Mappings of Planar Domains and Surfaces, 2014 (preprint)

  28. Kirby R.C.: Stable homeomorphisms and the annulus conjecture. Ann. Math. 89, 575–582 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kirby, R.C., Siebenmann, L.C., Wall, C.T.C.: The annulus conjecture and triangulation. Not. Am. Math. Soc. 16(432), abstract 69T-G27 (1969)

  30. Koskela, P.: Lectures on Quasiconformal Mappings. University of Jyväskylä, Jyväskylä

  31. Luukkainen J.: Lipschitz and quasiconformal approximation of homeomorphism pairs. Topol. Appl. 109, 1–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Moise E.E.: Affine structures in 3-manifolds. IV. Piecewise linear approximations of homeomorphisms. Ann. Math. 55, 215–222 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  33. Moise, E.E.: Geometric topology in dimensions 2 and 3. Graduate Texts in Mathematics, vol. 47. Springer, New York, 1977

  34. Mora-Corral C.: Approximation by piecewise affine homeomorphisms of Sobolev homeomorphisms that are smooth outside a point. Houston J. Math. 35, 515–539 (2009)

    MATH  MathSciNet  Google Scholar 

  35. Morrey C.B.: Quasi-convexity and the semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  36. Müller S., Tang Q., Yan B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré 11, 217–243 (1994)

    MATH  MathSciNet  Google Scholar 

  37. Radó T.: Über den Begriff Riemannschen Fläche. Acta. Math. Szeged 2, 101–121 (1925)

    MATH  Google Scholar 

  38. Rado, T., Reichelderfer, P.V.: Continuous Transformations in Analysis. Springer, Berlin, 1955

  39. Rushing, T.B.: Topological embeddings. Pure and Applied Mathematics, vol. 52. Academic Press, New York, 1973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Hencl.

Additional information

Communicated by V. Šverák

S. Hencl was supported by the ERC CZ Grant LL1203 of the Czech Ministry of Education. B. Vejnar was supported by the Grant GAČR 14-06989P and he is a junior researcher in the University Center for Mathematical Modeling, Applied Analysis and Computational Mathematics (Math MAC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hencl, S., Vejnar, B. Sobolev Homeomorphism that Cannot be Approximated by Diffeomorphisms in W1,1 . Arch Rational Mech Anal 219, 183–202 (2016). https://doi.org/10.1007/s00205-015-0895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0895-5

Keywords

Navigation