Skip to main content
Log in

On the approximate differentiability of inverse maps

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

A chain rule for an a.e. approximately differentiable homeomorphism \({{f: \Omega \subset \mathbb{R}^{n} \xrightarrow{\rm onto}} \Omega^{\prime} \subset \mathbb{R}^{n}}\) is proved. Namely, there exists a Borel set \({{B \subset \mathcal{R}_{f}}}\) , where

$$\mathcal{R}_{f} = \{x \in \Omega : f\, {\rm is\,approximately\,differentiable\,at}\,x\,{\rm and}\,J_{f}(x) \neq 0\},$$

such that \({{\mid \mathcal{R}_{f} \setminus B \mid = 0}}\) , \({{f(B) \subset \mathcal{R}_{f-1}}}\) and J f-1(f(x))J f (x) =  1 for all \({{x \in B}}\) . In general, it is not true that \({{f(\mathcal{R}_{f}) \subset \mathcal{R}_{f-1}}}\) . Indeed, there exists a homeomorphism \({f_{0}: \Omega \subset \mathbb{R}^{n} \xrightarrow {\rm onto} \Omega^{\prime} \subset \mathbb{R}^{n}}\) such that f 0 is approximately differentiable at x 0 with \({{J_{f0}(x_{0}) \neq 0}}\) and \({{{f_{0}^{-1}}}}\) is not approximately differentiable at f 0(x 0). We give various conditions to guarantee that a homeomorphism preserves density points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.

  2. Astala K.: Area distortion of quasiconformal mappings. Acta Math. 173, 37–60 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Mathematical Series 48, Princeton University Press, Princeton, NJ, 2009.

  4. Astala K., Iwaniec T., Saksman E.: Beltrami operators in the plane. Duke Math. J. 107, 27–56 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ball J. M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh Sect. A 88, 315–328 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beurling A., Ahlfors L.: The boundary correspondence under quasiconformal mappings. Acta Math. 96, 125–142 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruckner A.M.: Density-preserving homeomorphisms and a theorem of Maximoff. Quart. J. Math. Oxford Ser. 2(21), 337–347 (1970)

    Article  MathSciNet  Google Scholar 

  8. Buczolich Z.: Density points and bi-Lipschitz functions in \({\mathbb{R}^{m}}\) . Proc. Amer. Math. Soc. 116, 53–59 (1992)

    MATH  MathSciNet  Google Scholar 

  9. R. Černý, Homeomorphism with zero Jacobian: Sharp integrability of the derivative. J. Math. Anal. Appl. 373 (2011), 161–174.

  10. Coifman R. R., Fefferman C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)

    MATH  MathSciNet  Google Scholar 

  11. M. Csörnyei, S. Hencl and J. Malý, Homeomorphisms in the Sobolev space W 1,n-1. J. Reine Angew. Math. 644 (2010), 221–235.

  12. L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992.

  13. H. Federer, Geometric Measure Theory. Grundlehren Math. Wiss. 153, Springer, New York, 1969.

  14. N. Fusco, G. Moscariello and C. Sbordone, The limit of W 1,1-homeomorphisms with finite distortion. Calc. Var. Partial Differential Equations 33 (2008), 377– 390.

  15. Gehring F.W.: The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. F. W. Gehring and J. C. Kelly, Quasi-conformal mappings and Lebesgue density. In: Discontinuous Groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), Ann. of Math. Stud. 79, Princeton University Press, Princeton, NJ, 1974, 171–179.

  17. Gehring F. W., Lehto O.: On the total differentiability of functions of a complex variable. Ann. Acad. Sci. Fenn. Math. 272, 1–9 (1959)

    MathSciNet  Google Scholar 

  18. Giaquinta M., Giusti E.: On the regularity of the minima of variational integrals. Acta Math. 148, 31–46 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Giaquinta and E. Giusti, Quasiminima. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 79–107

  20. M. Giaquinta, G. Modica and J. Souček, Area and the area formula. In: Proceedings of the Second International Conference on Partial Differential Equations (Milan, 1992), Rend. Sem. Mat. Fis. Milano 62, 1994, 53–87.

  21. G. Goffman, T. Nishiura and D. Waterman, Homeomorphisms in Analysis. Math. Surveys Monogr. 54, Amer. Math. Soc., Providence, RI, 1997.

  22. Hencl S.: Sharpness of the assumptions for the regularity of a homeomorphism. Michigan Math. J. 59, 667–678 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Hencl and P. Koskela, Lectures on Mappings of Finite Distortion. Lecture Notes in Math. 2096, Springer, Cham, 2014.

  24. S. Hencl, P. Koskela and J. Malý, Regularity of the inverse of a Sobolev homeomorphism in space. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 1267–1285.

  25. S. Hencl, G. Moscariello, A. Passarelli di Napoli and C. Sbordone, Bi-Sobolev mappings and elliptic equations in the plane. J. Math. Anal. Appl. 355 (2009), 22–32.

  26. T. Iwaniec and G. Martin, Geometric Function Theory and Non-Linear Analysis. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001.

  27. T. Iwaniec and C. Sbordone, Quasiharmonic fields. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 519–572.

  28. Jones P. W.: Homeomorphisms of the line which preserve BMO. Ark. Mat. 21, 229–231 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Reg. Conf. Ser. Math. 83, Amer. Math. Soc., Providence, RI, 1994.

  30. Korte R., Marola N., Shanmugalingam N.: Quasiconformality, homeomorphisms between metric measure spaces preserving quasiminimizers, and uniform density property. Ark. Mat. 50, 111–134 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Khintchine A.: Recherches sur la structure des fonctions mesurables. Mat. Sb. 31, 265–285 (1923)

    Google Scholar 

  32. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane. Springer, Berlin, 1971.

  33. O. Martio and C. Sbordone, Quasiminimizers in one dimension: Integrability of the derivative, inverse function and obstacle problems. Ann. Mat. Pura Appl. (4) 186 (2007), 579–590.

  34. Migliaccio L.: Some characterizations of Gehring G p -class. Houston J. Math. 19, 89–95 (1993)

    MATH  MathSciNet  Google Scholar 

  35. G. Moscariello and A. Passarelli di Napoli, The regularity of the inverses of Sobolev homeomorphisms with finite distortion. J. Geom. Anal. 24 (2014), 571– 594.

  36. Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165, 207–226 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  37. Niewiarowski J.: Density-preserving homeomorphisms. Fund. Math. 106, 77–87 (1980)

    MATH  MathSciNet  Google Scholar 

  38. J. Onninen, Differentiability of monotone Sobolev functions. Real Anal. Exchange 26 (2000/01), 761–772.

  39. S. P. Ponomarev, Property N of homeomorphism in the class W 1,p. Sibirsk. Mat. Zh. 28 (1987), 140–148 (in Russian).

  40. T. Radice, New bounds for \({{A_{\infty}}}\) weights. Ann. Acad. Sci. Fenn. Math. 33 (2008), 111–119.

  41. Reimann H. M.: Functions of bounded mean oscillation and quasiconformal mappings. Comment. Math. Helv. 49, 260–276 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yu. G. Reshetnyak, Some geometric properties of functions and mappings with generalized derivatives. Sibirsk. Mat. Zh. 7 (1966), 886–919 (in Russian).

  43. S. Saks, Theory of the Integral. Dover, New York, 1964.

  44. C. Sbordone, Sharp embeddings for classes of weights and applications. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29 (2005), 339–354.

  45. Sbordone C., Zecca G.: The L p-solvability of the Dirichlet problem for planar elliptic equations, sharp results. J. Fourier Anal. Appl. 15, 871–903 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. G. Tolstoff, Sur la dérivée approximative exacte. Rec. Math. (Mat. Sbornik) N.S. 4 (1938), 499–504.

  47. Uchiyama A.: Weight functions of the class (\({{A_{\infty}}}\)) and quasi-conformal mappings. Proc. Japan Acad. 51, 811–814 (1975)

    Article  MathSciNet  Google Scholar 

  48. Väisälä J.: Two new characterizations for quasiconformality. Ann. Acad. Sci. Fenn. Math. 362, 1–12 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sbordone.

Additional information

To Haïm Brezis on his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Onofrio, L., Sbordone, C. & Schiattarella, R. On the approximate differentiability of inverse maps. J. Fixed Point Theory Appl. 15, 473–499 (2014). https://doi.org/10.1007/s11784-014-0206-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-014-0206-z

Mathematics Subject Classification

Keywords

Navigation