Advertisement

Molecular Genetics and Genomics

, Volume 293, Issue 6, pp 1453–1467 | Cite as

The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea

  • Craig D. Soutar
  • John Stavrinides
Original Article

Abstract

For many pathogenic members of the Enterobacterales, siderophores play an important role in virulence, yet the siderophores of the host-associating members of the genus Pantoea remain unexplored. We conducted a genome-wide survey of environmental and host-associating strains of Pantoea to identify known and candidate siderophore biosynthetic clusters. Our analysis identified three clusters homologous to those of enterobactin, desferrioxamine, and aerobactin that were prevalent among Pantoea species. Using both phylogenetic and comparative genomic approaches, we demonstrate that the enterobactin-like cluster was present in the common ancestor of all Pantoea, with evidence for three independent losses of the cluster in P. eucalypti, P. eucrina, and the P. ananatis—P. stewartii lineage. The desferrioxamine biosynthetic cluster, previously described and characterized in Pantoea, was horizontally acquired from its close relative Erwinia, with phylogenetic evidence that these transfer events were ancient and occurred between ancestral lineages. The aerobactin cluster was identified in three host-associating species groups, P. septica, P. ananatis, and P. stewartii, with strong evidence for horizontal acquisition from human-pathogenic members of the Enterobacterales. Our work identifies and describes the key siderophore clusters in Pantoea, shows three distinct evolutionary processes driving their diversification, and provides a foundation for exploring the roles that these siderophores may play in human opportunistic infections.

Keywords

Siderophores Pantoea Desferrioxamine Aerobactin Enterobactin Horizontal transfer 

Notes

Funding

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (2015–06417) and the Canada Foundation for Innovation (28591).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Data availability

Data generated or analyzed during this study are included in this published article (and its supplementary information files). Gene clusters and MLSA loci have been deposited in Genbank under accession numbers MH015021-MH015174.

Supplementary material

438_2018_1477_MOESM1_ESM.pdf (144 kb)
Supplementary material 1 (PDF 143 KB)
438_2018_1477_MOESM2_ESM.xlsx (24 kb)
Supplementary material 2 (XLSX 23 KB)
438_2018_1477_MOESM3_ESM.docx (11 kb)
Supplementary material 3 (DOCX 10 KB)
438_2018_1477_MOESM4_ESM.zip (780 kb)
Supplementary material 4 (ZIP 779 KB)

References

  1. Andersen SB, Marvig RL, Molin S et al (2015) Long-term social dynamics drive loss of function in pathogenic bacteria. Proc Natl Acad Sci 112:10756–10761.  https://doi.org/10.1073/pnas.1508324112 CrossRefPubMedGoogle Scholar
  2. Bentley SD, Chater KF, Cerdeño-Tárraga A-M et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147.  https://doi.org/10.1038/417141a CrossRefPubMedGoogle Scholar
  3. Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of ferrioxamine E as the principal siderophore of Erwinia herbicola (Enterobacter agglomerans). Biol Met 1:51–56.  https://doi.org/10.1007/BF01128017 CrossRefPubMedGoogle Scholar
  4. Besemer J (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618.  https://doi.org/10.1093/nar/29.12.2607 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brady CL, Cleenwerck I, Venter SN et al (2010) Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov. Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfe. Int J Syst Evol Microbiol 60:2430–2440.  https://doi.org/10.1099/ijs.0.017301-0 CrossRefPubMedGoogle Scholar
  6. Burbank L, Mohammadi M, Roper MC (2015) Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl Environ Microbiol 81:139–148.  https://doi.org/10.1128/AEM.02503-14 CrossRefPubMedGoogle Scholar
  7. Campestre MP, Castagno LN, Estrella MJ, Ruiz OA (2016) Lotus japonicus plants of the Gifu B-129 ecotype subjected to alkaline stress improve their Fe2 + bio-availability through inoculation with Pantoea eucalypti M91. J Plant Physiol 192:47–55.  https://doi.org/10.1016/j.jplph.2016.01.001 CrossRefPubMedGoogle Scholar
  8. Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6:601–611.  https://doi.org/10.1002/cbic.200400283 CrossRefPubMedGoogle Scholar
  9. Cordero OX, Ventouras L-A, DeLong EF, Polz MF (2012) Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci 109:20059–20064.  https://doi.org/10.1073/pnas.1213344109 CrossRefPubMedGoogle Scholar
  10. Correa VR, Majerczak DR, Ammar ED et al (2012) The bacterium Pantoea stewartii uses two different type III secretion systems to colonize its plant host and insect vector. Appl Environ Microbiol 78:6327–6336.  https://doi.org/10.1128/AEM.00892-12 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coutinho TA, Venter SN (2009) Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol 10:325–335.  https://doi.org/10.1111/j.1364-3703.2009.00542.x CrossRefPubMedGoogle Scholar
  12. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249.  https://doi.org/10.1128/MMBR.66.2.223-249.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crouch MLV, Castor M, Karlinsey JE et al (2008) Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol 67:971–983.  https://doi.org/10.1111/j.1365-2958.2007.06089.x CrossRefPubMedGoogle Scholar
  14. De Baere T, Verhelst R, Labit C et al (2004) Bacteremic infection with Pantoea ananatis. J Clin Microbiol 42:4393–4395.  https://doi.org/10.1128/JCM.42.9.4393-4395.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Maayer P, Venter SN, Kamber T et al (2011) Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genom 12:576.  https://doi.org/10.1186/1471-2164-12-576 CrossRefGoogle Scholar
  16. De Maayer P, Chan WY, Rezzonico F et al (2012) Complete genome sequence of clinical isolate Pantoea ananatis LMG 5342. J Bacteriol 194:1615–1616.  https://doi.org/10.1128/JB.06715-11 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dellagi A, Brisset MN, Paulin JP, Expert D (1998) Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol Plant Microbe Interact 11:734–742.  https://doi.org/10.1094/MPMI.1998.11.8.734 CrossRefPubMedGoogle Scholar
  18. Dellagi A, Segond D, Rigault M et al (2009) Microbial siderophores exert a subtle role in arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol 150:1687–1696.  https://doi.org/10.1104/pp.109.138636 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Frueh DP, Arthanari H, Koglin A et al (2008) Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454:903–906.  https://doi.org/10.1038/nature07162 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Han AW, Sandy M, Fishman B et al (2013) Turnerbactin, a novel triscatecholate siderophore from the shipworm endosymbiont Teredinibacter turnerae T7901. PLoS One 8:e76151.  https://doi.org/10.1371/journal.pone.0076151 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Heesemann J (1987) Chromosomal-encoded siderophores are required for mouse virulence of enteropathogenic Yersinia species. FEMS Microbiol Lett 48:229–233.  https://doi.org/10.1111/j.1574-6968.1987.tb02547.x CrossRefGoogle Scholar
  22. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657CrossRefGoogle Scholar
  23. Kadi N, Challis GL (2009) Chap. 17 siderophore biosynthesis. A substrate specificity assay for nonribosomal peptide synthetase-independent siderophore synthetases involving trapping of acyl-adenylate intermediates with hydroxylamine. Methods Enzymol 458:431–457CrossRefGoogle Scholar
  24. Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618.  https://doi.org/10.1038/nrg2386 CrossRefPubMedGoogle Scholar
  25. Kirzinger MWB, Butz CJ, Stavrinides J (2015) Inheritance of Pantoea type III secretion systems through both vertical and horizontal transfer. Mol Genet Genomics 290:2075–2088.  https://doi.org/10.1007/s00438-015-1062-2 CrossRefPubMedGoogle Scholar
  26. Köster W (2001) ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 152:291–301.  https://doi.org/10.1016/S0923-2508(01)01200-1 CrossRefPubMedGoogle Scholar
  27. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ling J, Pan H, Gao Q et al (2013) Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058. PLoS One.  https://doi.org/10.1371/journal.pone.0057794 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618.  https://doi.org/10.1007/s00248-010-9780-9 CrossRefPubMedGoogle Scholar
  30. Medema MH, Kottmann R, Yilmaz P et al (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11:625–631.  https://doi.org/10.1038/nchembio.1890 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Miethke M, Marahiel MA (2007) Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol Mol Biol Rev 71:413–451.  https://doi.org/10.1128/MMBR.00012-07 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Morris JJ, Lenski RE, Zinser ER (2012) The black queen hypothesis: evolution of dependencies through adaptative gene loss. MBio 3:1–7.  https://doi.org/10.1128/mBio.00036-12.Copyright CrossRefGoogle Scholar
  33. Nadarasah G, Stavrinides J (2014) Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. Microbiol (U K) 160:602–615.  https://doi.org/10.1099/mic.0.073452-0 CrossRefGoogle Scholar
  34. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726CrossRefGoogle Scholar
  35. Quadri LEN, Sello J, Keating TA et al (1998) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645.  https://doi.org/10.1016/S1074-5521(98)90291-5 CrossRefPubMedGoogle Scholar
  36. Raffatellu M, George MD, Akiyama Y et al (2009) Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5:476–486.  https://doi.org/10.1016/j.chom.2009.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941.  https://doi.org/10.1146/annurev.micro.54.1.881 CrossRefPubMedGoogle Scholar
  38. Roper MC (2011) Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn. Mol Plant Pathol 12:628–637.  https://doi.org/10.1111/j.1364-3703.2010.00698.x CrossRefPubMedGoogle Scholar
  39. Russo TA, Olson R, MacDonald U et al (2014) Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun 82:2356–2367.  https://doi.org/10.1128/IAI.01667-13 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Russo TA, Olson R, MacDonald U et al (2015) Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun 83:3325–3333.  https://doi.org/10.1128/IAI.00430-15 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Searle LJ, Méric G, Porcelli I et al (2015) Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli. PLoS One.  https://doi.org/10.1371/journal.pone.0117906 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sengupta M, Banerjee S, Das NK et al (2016) Early onset neonatal septicaemia caused by Pantoea agglomerans. J Clin Diagn Res 10:DD01–DD02.  https://doi.org/10.7860/JCDR/2016/19613.7807 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Seyedsayamdost MR, Cleto S, Carr G et al (2012) Mixing and matching siderophore clusters: structure and biosynthesis of serratiochelins from Serratia sp. V4. J Am Chem Soc 134:13550–13553.  https://doi.org/10.1021/ja304941d CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol.  https://doi.org/10.1038/msb.2011.75 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Smith DDN, Nickzad A, Déziel E, Stavrinides J (2016) A novel glycolipid biosurfactant confers grazing resistance upon Pantoea ananatis BRT175 against the social amoeba Dictyostelium discoideum. mSphere 1:e00075–e00015.  https://doi.org/10.1128/mSphere.00075-15 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Smits THM, Duffy B (2011) Genomics of iron acquisition in the plant pathogen Erwinia amylovora: Insights in the biosynthetic pathway of the siderophore desferrioxamine E. Arch Microbiol 193:693–699.  https://doi.org/10.1007/s00203-011-0739-0 CrossRefPubMedGoogle Scholar
  47. Suzuki K, Tanabe T, Moon YH et al (2006) Identification and transcriptional organization of aerobactin transport and biosynthesis cluster genes of Vibrio hollisae. Res Microbiol 157:730–740.  https://doi.org/10.1016/j.resmic.2006.05.001 CrossRefPubMedGoogle Scholar
  48. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Thompson FL, Hoste B, Vandemeulebroecke K, Swings J (2003) Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 53:1615–1617.  https://doi.org/10.1099/ijs.0.02660-0 CrossRefPubMedGoogle Scholar
  50. Walterson AM, Stavrinides J (2015) Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev 39:968–984.  https://doi.org/10.1093/femsre/fuv027 CrossRefPubMedGoogle Scholar
  51. Walterson AM, Smith DDN, Stavrinides J (2014) Identification of a Pantoea biosynthetic cluster that directs the synthesis of an antimicrobial natural product. PLoS One 9:e96208.  https://doi.org/10.1371/journal.pone.0096208 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Weber T, Blin K, Duddela S et al (2015) AntiSMASH 3.0-A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243.  https://doi.org/10.1093/nar/gkv437 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Weinberg ED (1993) The development of awareness of iron-withholding defense. Perspect Biol Med 36:215–221.  https://doi.org/10.1353/pbm.1993.0063 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of ReginaReginaCanada

Personalised recommendations