Skip to main content
Log in

Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Genomics has clarified the biosynthetic pathway for desferrioxamine E critical for iron acquisition in the enterobacterial fire blight pathogen Erwinia amylovora. Evidence for each of the individual steps and the role of desferrioxamine E biosynthesis in pathogen virulence and cell protection from host defenses is presented. Using comparative genomics, it can be concluded that desferrioxamine biosynthesis is ancestral within the genera Erwinia and Pantoea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams AS, Currie CR, Cardoza Y, Klepzig KD, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147

    Article  CAS  Google Scholar 

  • Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL (2004) Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283

    Article  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang C-H, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream M-A, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of ferrioxamine E as the principle siderophore of Erwinia herbicola (Enterobacter agglomerans). Biol Met 1:51–56

    Article  PubMed  CAS  Google Scholar 

  • Bonn WG, van der Zwet T (2000) Distribution and economic importance of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 37–53

    Chapter  Google Scholar 

  • Brady CL, Venter SN, Cleenwerck I, Engelbeen K, Vancanneyt M, Swings J, Coutinho TA (2009) Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int J Syst Evol Microbiol 59:2339–2345

    Article  PubMed  CAS  Google Scholar 

  • Brickman TJ, Armstrong SK (2005) Bordetella AlcS transporter functions in alcaligin siderophore export and is central to inducer sensing in positive regulation of alcaligin system gene expression. J Bacteriol 187:3650–3661

    Article  PubMed  CAS  Google Scholar 

  • Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6:601–611

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V, Wee S, Herrero M, Neilands JB (1987) Operator sequences of the aerobactin operon of plasmid ColV-K30: binding of the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630

    PubMed  Google Scholar 

  • De Maayer P, Chan WY, Venter SN, Toth IK, Birch PRJ, Joubert F, Coutinho TA (2010) The genome sequence of Pantoea ananatis LMG20103, the causative agent of Eucalyptus blight and dieback. J Bacteriol 192:2936–2937

    Article  PubMed  Google Scholar 

  • Deiss K, Hantke K, Winkelmann G (1998) Molecular recognition of siderophores: a study with cloned ferrioxamine receptors (FoxA) from Erwinia herbicola and Yersinia enterocolitica. Biometals 11:131–137

    Article  PubMed  CAS  Google Scholar 

  • Dellagi A, Brisset M-N, Paulin J-P, Expert D (1998) Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol Plant-Microbe Interact 11:734–742

    Article  PubMed  CAS  Google Scholar 

  • Duffy B, Schärer H-J, Bünter M, Klay A, Holliger E (2005) Regulatory measures against Erwinia amylovora in Switzerland. EPPO Bull 35:239–244

    Article  Google Scholar 

  • Ewing WH, Fife MA (1972) Enterobacter agglomerans (Beijerinck) comb. nov. (the Herbicola-Lathyri bacteria). Int J Syst Bacteriol 22:4–11

    Article  Google Scholar 

  • Expert D (1999) Withholding and exchanging iron: interactions between Erwinia spp. and their host plants. Annu Rev Phytopathol 37:307–334

    Article  PubMed  CAS  Google Scholar 

  • Expert D, Dellagi A, Kachadourian R (2000) Iron and fire blight: role in pathogenicity of desferrioxamine E, the main siderophore of Erwinia amylovora. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 179–195

    Chapter  Google Scholar 

  • Feistner GJ (1995) Proferrioxamine synthesis in Erwinia amylovora in response to precursor or hydroxylysine feeding: metabolic profiling with liquid chromatography-electrospray mass spectrometry. Biometals 8:318–327

    PubMed  CAS  Google Scholar 

  • Feistner GJ, Ishimaru C (1996) Proferrioxamine profiles of Erwinia herbicola and related bacteria. Biometals 9:337–344

    Article  CAS  Google Scholar 

  • Feistner GJ, Stahl DC, Gabrik AH (1993) Proferrioxamine siderophores of Erwinia amylovora. A capillary liquid chromatographic/electrospray tandem mass spectrometry study. Org Mass Spectrom 28:163–175

    Article  CAS  Google Scholar 

  • Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345

    Article  Google Scholar 

  • Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292

    Article  PubMed  CAS  Google Scholar 

  • Hauben L, Swings J (2005) Genus XIII. Erwinia. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. 2nd edn, Vol 2: The Proteobacteria, part B: the Gammaproteobacteria. Springer, New York, pp 670–679

    Google Scholar 

  • Kachadourian R, Dellagi A, Laurent J, Bricard L, Kunesch G, Expert D (1996) Desferrioxamine-dependent iron transport in Erwinia amylovora CFBP 1430: cloning of the gene encoding the ferrioxamine receptor FoxR. Biometals 9:143–150

    Article  PubMed  CAS  Google Scholar 

  • Köster W (1991) Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli. Biol Met 4:23–32

    Article  PubMed  Google Scholar 

  • Kube M, Migdoll AM, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K (2008) The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol 10:2211–2222

    Article  PubMed  CAS  Google Scholar 

  • Kube M, Migdoll AM, Gehring I, Heitmann K, Mayer Y, Kuhl H, Knaust F, Geider K, Reinhardt R (2010) Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11:393

    Article  PubMed  Google Scholar 

  • Meyer J-M, Abdallah M (1980) The siderochromes of non-fluorescent pseudomonads: production of nocardamine by Pseudomonas stutzeri. J Gen Microbiol 118:125–129

    CAS  Google Scholar 

  • Møller V (1955) Simplified test for some amino acid decarboxylases and arginine dihydrolase system. Acta Pathol Microbiol Scand 36:158–172

    Article  PubMed  Google Scholar 

  • Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192

    Article  PubMed  CAS  Google Scholar 

  • Park DH, Thapa SP, Choi B-S, Kim W-S, Hur JH, Cho JM, Lim J-S, Choi I-Y, Lim CK (2011) Complete genome sequence of Japanese Erwinia strain Ejp617, a bacterial shoot blight pathogen of pear. J Bacteriol 193:586–587

    Article  PubMed  CAS  Google Scholar 

  • Pinto-Tomás AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Cleland WW, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123

    Article  PubMed  Google Scholar 

  • Powney R, Smits THM, Sawbridge T, Frey B, Blom J, Frey JE, Plummer KM, Beer SV, Luck J, Duffy B, Rodoni B (2011) Genome sequence of an Erwinia amylovora strain with restricted pathogenicity to Rubus plants. J Bacteriol 193:785–786

    Article  PubMed  CAS  Google Scholar 

  • Reissbrodt R, Rabsch W, Chapeaurouge A, Jung G, Winkelmann G (1990) Isolation and identification of ferrioxamine G and E in Hafnia alvei. Biol Met 3:54–60

    Article  CAS  Google Scholar 

  • Rezzonico F, Smits THM, Montesinos E, Frey JE, Duffy B (2009) Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 9:204

    Article  PubMed  Google Scholar 

  • Rezzonico F, Vogel G, Duffy B, Tonolla M (2010) Whole cell MALDI-TOF mass spectrometry application for rapid identification and clustering analysis of Pantoea species. Appl Environ Microbiol 76:4497–4509

    Article  PubMed  CAS  Google Scholar 

  • Rezzonico F, Smits THM, Duffy B (2011) Diversity and functionality of CRISPR regions in fire blight pathogen Erwinia amylovora. Appl Environ Microbiol 77:3819–3829

    Article  PubMed  CAS  Google Scholar 

  • Schupp T, Waldmeier U, Divers M (1987) Biosynthesis of desferrioxamine B in Streptomyces pilosus: evidence for the involvement of lysine decarboxylase. FEMS Microbiol Lett 42:135–139

    Article  CAS  Google Scholar 

  • Schupp T, Toupet C, Divers M (1988) Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene 64:179–188

    Article  PubMed  CAS  Google Scholar 

  • Sebaihia M, Bocsanczy AM, Biehl BS, Quail MA, Perna NT, Glasner JD, DeClerck GA, Cartinhour S, Schneider DJ, Bentley SD, Parkhill J, Beer SV (2010) Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J Bacteriol 192:2020–2021

    Article  PubMed  CAS  Google Scholar 

  • Smits THM, Jaenicke S, Rezzonico F, Kamber T, Goesmann A, Frey JE, Duffy B (2010a) Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genomics 11:2

    Article  PubMed  Google Scholar 

  • Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B (2010b) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant-Microbe Interact 23:384–393

    Article  PubMed  CAS  Google Scholar 

  • Smits THM, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA, Stockwell VO, Frey JE, Duffy B (2010c) The genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J Bacteriol 192:6486–6487

    Article  PubMed  CAS  Google Scholar 

  • Smits THM, Rezzonico F, Pelludat C, Goesmann A, Frey JE, Duffy B (2010d) Genomic and phenotypic characterization of a non-pigmented variant of Pantoea vagans biocontrol strain C9-1 lacking the 530 kb megaplasmid pPag3. FEMS Microbiol Lett 308:48–54

    Article  PubMed  CAS  Google Scholar 

  • Smits THM, Rezzonico F, Duffy B (2011a) Evolutionary insights from Erwinia amylovora genomics. J Biotechnol. doi:10.1016/j.jbiotec.2010.1010.1075

  • Smits THM, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA, Frey JE, Stockwell VO, Duffy B (2011b) Metabolic versatility and antibiotic biosynthesis are distinguishing genomic features of the commercial fire blight antagonist Pantoea vagans C9-1. PLoS One 6(7):e22247

    Google Scholar 

  • Yang C, Leong J (1982) Production of deferriferrioxamines B and E from a ferroverdin-producing Streptomyces species. J Bacteriol 49:381–383

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Cosima Pelludat (ACW) for insightful discussion during preparation of this review. Funding was provided in part by the Swiss Secretariat for Education and Research (SBF C07.0038) and the Swiss Federal Office for Agriculture (BLW Fire Blight Research—Pathogen). This work was conducted within the Swiss ProfiCrops program and the European Science Foundation research network COST Action 864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo H. M. Smits.

Additional information

Communicated by John Helmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smits, T.H.M., Duffy, B. Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Arch Microbiol 193, 693–699 (2011). https://doi.org/10.1007/s00203-011-0739-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0739-0

Keywords

Navigation