The multiple actions of NO

Cardiovascular Physiology
  • 553 Downloads

Abstract

Studies in the last two decades have firmly established that nitric oxide (NO) exerts a broad range of effects on bodily functions including muscle contractility, platelet aggregation, metabolism, neuronal activity, and immune responses. The underlying mechanisms rely primarily on elevating guanosine 3′,5′-cyclic monophosphate due to the stimulation of soluble guanylyl cyclase, inhibiting mitochondria respiration by the action on cytochrome C oxidase, and nitrosylating proteins and enzymes. Under pathophysiological conditions, an increased production of NO concurrently with an enhanced generation of superoxide leads to the formation of peroxynitrite, a potent oxidative agent, and thus tissue injuries. This article intends to provide a brief review on the effects of NO in the modulations of muscle contractility, platelet aggregation, metabolism, neuronal activity, and immune responses. The actions of NO vary depending on the interactions between this gaseous molecule, its derivates, and their effectors as well as the local redox environments. Considering the complexity of these interactions and the widespread presence of NO in various body systems and cell types, there is no doubt that this area of research will remain very challenging and rewarding in the foreseeable future.

Keywords

Muscle contraction Platelet Metabolism Neuronal activity Immune response 

References

  1. 1.
    Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schöneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207CrossRefPubMedGoogle Scholar
  2. 2.
    Almeida A, Moncada S, Bolaños JP (2004) Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol 6:45–51CrossRefPubMedGoogle Scholar
  3. 3.
    Antl M, von Brühl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hofmann F, Massberg S, Schlossmann J (2007) IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 109:552–559CrossRefPubMedGoogle Scholar
  4. 4.
    Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534CrossRefPubMedGoogle Scholar
  5. 5.
    Balon TW, Nadler JL (1997) Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82:359–363PubMedGoogle Scholar
  6. 6.
    Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520CrossRefPubMedGoogle Scholar
  7. 7.
    Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916CrossRefPubMedGoogle Scholar
  8. 8.
    Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A (2008) Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: impact on neuronal survival. Biochim Biophys Acta 1777:789–793CrossRefPubMedGoogle Scholar
  9. 9.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853CrossRefPubMedGoogle Scholar
  10. 10.
    Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770CrossRefPubMedGoogle Scholar
  11. 11.
    Brookes PS, Shiva S, Patel RP, Darley-Usmar VM (2002) Measurement of mitochondrial respiratory thresholds and the control of respiration by nitric oxide. Methods Enzymol 359:305–319CrossRefPubMedGoogle Scholar
  12. 12.
    Carreras MC, Poderoso JJ (2007) Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol 292:C1569–C1580CrossRefPubMedGoogle Scholar
  13. 13.
    Curran RD, Ferrari FK, Kispert PH, Stadler J, Stuehr DJ, Simmons RL, Billiar TR (1991) Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB J 5:2085–2092PubMedGoogle Scholar
  14. 14.
    Derakhshan B, Hao G, Gross SS (2007) Balancing reactivity against selectivity: the evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res 75:210–219CrossRefPubMedGoogle Scholar
  15. 15.
    Dhanakoti S, Gao Y, Nguyen MQ, Raj JU (2000) Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP. J Appl Physiol 88:1637–1642PubMedGoogle Scholar
  16. 16.
    Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531CrossRefPubMedGoogle Scholar
  17. 17.
    Eu JP, Sun J, Xu L, Stamler JS, Meissner G (2000) The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell 102:499–509CrossRefPubMedGoogle Scholar
  18. 18.
    Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, Barski JJ, Meyer M, Konnerth A, De Zeeuw CI, Hofmann F (2003) Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol 163:295–302CrossRefPubMedGoogle Scholar
  19. 19.
    Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560CrossRefPubMedGoogle Scholar
  20. 20.
    Francis SH, Blount MA, Zoraghi R, Corbin JD (2005) Molecular properties of mammalian proteins that interact with cGMP: protein kinases, cation channels, phosphodiesterases, and multi-drug anion transporters. Front Biosci 10:2097–2117CrossRefPubMedGoogle Scholar
  21. 21.
    Friebe A, Koesling D (2009) The function of NO-sensitive guanylyl cyclase: what we can learn from genetic mouse models. Nitric Oxide 21:149–156CrossRefPubMedGoogle Scholar
  22. 22.
    Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721PubMedGoogle Scholar
  23. 23.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376CrossRefPubMedGoogle Scholar
  24. 24.
    Gao Y, Tolsa J-F, Shen H, Raj JU (1998) Effect of selective phosphodiesterase inhibitors on the responses of ovine pulmonary veins to prostaglandin E2. J Appl Physiol 84:13–18PubMedGoogle Scholar
  25. 25.
    Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J NeuroSci 27:2783–2802CrossRefPubMedGoogle Scholar
  26. 26.
    Garthwaite G, Bartus K, Malcolm D, Goodwin D, Kollb-Sielecka M, Dooldeniya C, Garthwaite J (2006) Signaling from blood vessels to CNS axons through nitric oxide. 1:. J Neurosci 26:7730–7740CrossRefPubMedGoogle Scholar
  27. 27.
    Godecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UK, Stumpe T, Isenberg G, Schrader J (2001) Inotropic response to beta-adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 532:195–204CrossRefPubMedGoogle Scholar
  28. 28.
    Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 287:L262–L268CrossRefPubMedGoogle Scholar
  29. 29.
    Gyurko R, Leupen S, Huang PL (2006) Deletion of exon 6 of the neuronal nitric oxide synthase gene in mice results in hypogonadism and infertility. Endocrinology 143:2767–2774CrossRefGoogle Scholar
  30. 30.
    Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21:92–103CrossRefPubMedGoogle Scholar
  31. 31.
    Hardie DG (2004) The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117(5479–54):87Google Scholar
  32. 32.
    Hirschfield W, Moody MR, O’Brien WE, Gregg AR, Bryan RM Jr, Reid MB (2000) Nitric oxide release and contractile properties of skeletal muscles from mice deficient in type III NOS. Am J Physiol Regul Integr Comp Physiol 278:R95–R100PubMedGoogle Scholar
  33. 33.
    Hofmann F, Bernhard D, Lukowski R, Weinmeister P (2009) cGMP-regulated protein kinases (cGK). Handb Exp Pharmacol 191:137–162CrossRefPubMedGoogle Scholar
  34. 34.
    Hurt KJ, Sezen SF, Champion HC, Crone JK, Palese MA, Huang PL, Sawa A, Luo X, Musicki B, Snyder SH, Burnett AL (2006) Alternatively spliced neuronal nitric oxide synthase mediates penile erection. Proc Natl Acad Sci USA 103:3440–3443CrossRefPubMedGoogle Scholar
  35. 35.
    Ignarro LJ, Buga GM, Wei LH, Bauer PM, Wu G, del Soldato P (2001) Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 98:4202–4208CrossRefPubMedGoogle Scholar
  36. 36.
    Ito M, Nakano T, Erdodi F, Hartshorne DJ (2004) Myosin phosphatase: structure, regulation and function. Mol Cell Biochem 259:197–209CrossRefPubMedGoogle Scholar
  37. 37.
    Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588CrossRefPubMedGoogle Scholar
  38. 38.
    Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970CrossRefPubMedGoogle Scholar
  39. 39.
    Korhonen R, Lahti A, Kankaanranta H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4:471–479CrossRefPubMedGoogle Scholar
  40. 40.
    Laroux FS, Lefer DJ, Kawachi S, Scalia R, Cockrell AS, Gray L, Van der Heyde H, Hoffman JM, Grisham MB (2000) Role of nitric oxide in the regulation of acute and chronic inflammation. Antioxid Redox Signal 2:391–396CrossRefPubMedGoogle Scholar
  41. 41.
    Laver JR, Stevanin TM, Messenger SL, Lunn AD, Lee ME, Moir JW, Poole RK, Read RC (2009) Bacterial nitric oxide detoxification prevents host cell S-nitrosothiol formation: a novel mechanism of bacterial pathogenesis. FASEB J (in press)Google Scholar
  42. 42.
    Le Gouill E, Jimenez M, Binnert C, Jayet PY, Thalmann S, Nicod P, Scherrer U, Vollenweider P (2007) Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial beta-oxidation. Diabetes 56:2690–2696CrossRefPubMedGoogle Scholar
  43. 43.
    Mannick JB (2006) Immunoregulatory and antimicrobial effects of nitrogen oxides. Proc Am Thorac Soc 3:161–165CrossRefPubMedGoogle Scholar
  44. 44.
    Mason MG, Shepherd M, Nicholls P, Dobbin PS, Dodsworth KS, Poole RK, Cooper CE (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat Chem Biol 5:94–96CrossRefPubMedGoogle Scholar
  45. 45.
    Massberg S, Grüner S, Konrad I, Garcia Arguinzonis MI, Eigenthaler M, Hemler K, Kersting J, Schulz C, Muller I, Besta F, Nieswandt B, Heinzmann U, Walter U, Gawaz M (2004) Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice. Blood 103:136–142CrossRefPubMedGoogle Scholar
  46. 46.
    Massberg S, Sausbier M, Klatt P, Bauer M, Pfeifer A, Siess W, Fassler R, Ruth P, Krombach F, Hofmann F (1999) Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′, 5′-monophosphate kinase I. J Exp Med 189:1255–1264CrossRefPubMedGoogle Scholar
  47. 47.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  48. 48.
    Niedbala W, Cai B, Liew FY (2006) Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis 65(Suppl 3):iii37–iii40CrossRefPubMedGoogle Scholar
  49. 49.
    Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899CrossRefPubMedGoogle Scholar
  50. 50.
    Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304CrossRefPubMedGoogle Scholar
  51. 51.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424CrossRefPubMedGoogle Scholar
  52. 52.
    Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526CrossRefPubMedGoogle Scholar
  53. 53.
    Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, Hurtado-Ziola N, Nizet V, Johnson RS (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115:1806–1815CrossRefPubMedGoogle Scholar
  54. 54.
    Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszódi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fässler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051CrossRefPubMedGoogle Scholar
  55. 55.
    Poderoso JJ (2009) The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys 484:214–2120CrossRefPubMedGoogle Scholar
  56. 56.
    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276CrossRefPubMedGoogle Scholar
  57. 57.
    Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA 103:5379–5384CrossRefPubMedGoogle Scholar
  58. 58.
    Reaume CJ, Sokolowski MB (2009) cGMP-dependent protein kinase as a modifier of behaviour. Handb Exp Pharmacol 191:423–443CrossRefPubMedGoogle Scholar
  59. 59.
    Reid MB (2001) Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 33:371–376CrossRefPubMedGoogle Scholar
  60. 60.
    Roberts CK, Barnard RJ, Scheck SH, Balon TW (1997) Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent. Am J Physiol 273:E220–E225PubMedGoogle Scholar
  61. 61.
    Rudolph V, Freeman BA (2009) Cardiovascular consequences when nitric oxide and lipid signaling converge. Circ Res 105:511–522CrossRefPubMedGoogle Scholar
  62. 62.
    Schildknecht S, Ullrich V (2009) Peroxynitrite as regulator of vascular prostanoid synthesis. Arch Biochem Biophys 484:183–189CrossRefPubMedGoogle Scholar
  63. 63.
    Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, Casadei B, Chowienczyk P, Shah AM (2009) Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation 119:2656–2662CrossRefPubMedGoogle Scholar
  64. 64.
    Seddon M, Shah AM, Casadei B (2007) Cardiomyocytes as effectors of nitric oxide signalling. Cardiovasc Res 75:315–326CrossRefPubMedGoogle Scholar
  65. 65.
    Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB (2007) A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56:670–688CrossRefPubMedGoogle Scholar
  66. 66.
    Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936CrossRefPubMedGoogle Scholar
  67. 67.
    Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106:675–683CrossRefPubMedGoogle Scholar
  68. 68.
    Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078CrossRefPubMedGoogle Scholar
  69. 69.
    Taylor CT, Moncada S (2009) Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol (in press)Google Scholar
  70. 70.
    Toda N, Ayajiki K, Okamura T (2005) Nitric oxide and penile erectile function. Pharmacol Ther 106:233–266CrossRefPubMedGoogle Scholar
  71. 71.
    Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61:62–97CrossRefPubMedGoogle Scholar
  72. 72.
    Toda N, Herman AG (2005) Gastrointestinal function regulation by nitrergic efferent nerves. Pharmacol Rev 57:315–338CrossRefPubMedGoogle Scholar
  73. 73.
    Toda N, Okamura T (2003) The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 55:271–324CrossRefPubMedGoogle Scholar
  74. 74.
    Trochu J-N, Bouhour J-B, Kaley G, Hintze TH (2000) Role of endotheliumderived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 87:1108–1117PubMedGoogle Scholar
  75. 75.
    Ullrich V, Kissner R (2006) Redox signaling: bioinorganic chemistry at its best. J Inorg Biochem 100:2079–2086CrossRefPubMedGoogle Scholar
  76. 76.
    Vanhoutte PM (1989) Endothelium and control of vascular function. State of the art lecture. Hypertension 13:658–667PubMedGoogle Scholar
  77. 77.
    Varga-Szabo D, Pleines I, Nieswandt B (2008) Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28:403–412CrossRefPubMedGoogle Scholar
  78. 78.
    Walter U, Gambaryan S (2009) cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handb Exp Pharmacol 191:533–548CrossRefPubMedGoogle Scholar
  79. 79.
    Yao X, Leung PS, Kwan HY, Wong TP, Fong MW (1999) Rod-type cyclic nucleotide-gated cation channel is expressed in vascular endothelium and vascular smooth muscle cells. Cardiovasc Res 41:282–290CrossRefPubMedGoogle Scholar
  80. 80.
    Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662CrossRefPubMedGoogle Scholar
  81. 81.
    Xu KY, Kuppusamy SP, Wang JQ, Li H, Cui H, Dawson TM, Huang PL, Burnett AL, Kuppusamy P, Becker LC (2003) Nitric oxide protects cardiac sarcolemmal membrane enzyme function and ion active transport against ischemia-induced inactivation. J Biol Chem 278:41798–41803CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang J, Xie Z, Dong Y, Wang S, Liu C, Zou MH (2008) Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 283:27452–27461CrossRefPubMedGoogle Scholar
  83. 83.
    Zinkernagel AS, Johnson RS, Nizet V (2007) Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 85:1339–1346CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Physiology and PathophysiologyPeking University Health Science CenterBeijingChina

Personalised recommendations