Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes — prkg1 and prkg2 — code for cGKs, namely cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxta-glomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondreal bone growth. cGKs are also modulators of cell growth and many other functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alioua A, Tanaka Y, Wallner M, Hofmann F, Ruth P, Meera P, Toro L (1998) The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. J Biol Chem 273:32950–32956

    PubMed  CAS  Google Scholar 

  • Ammendola A, Geiselhoringer A, Hofmann F, Schlossmann J (2001) Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta. J Biol Chem 276(z):24153–24159

    PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    PubMed  CAS  Google Scholar 

  • Berk BC (2001) Vascular smooth muscle growth: autocrine growth mechanisms. Physiol Rev 81:999–1030

    PubMed  CAS  Google Scholar 

  • Biel M, Zong X, Ludwig A, Sautter A, Hofmann F (1999) Structure and function of cyclic nucleotide-gated channels. Rev Physiol Biochem Pharmacol 135:151–171

    PubMed  CAS  Google Scholar 

  • Boerth NJ, Dey NB, Cornwell TL, Lincoln TM (1997) Cyclic GMP-dependent protein kinase regulates vascular smooth muscle cell phenotype. J Vasc Res 34:245–259

    PubMed  CAS  Google Scholar 

  • Bonnevier J, Arner A (2004) Actions downstream of cyclic GMP/protein kinase G can reverse protein kinase C-mediated phosphorylation of CPI-17 and Ca(2+) sensitization in smooth muscle. J Biol Chem 279:28998–29003

    PubMed  CAS  Google Scholar 

  • Bonnevier J, Fassler R, Somlyo AP, Somlyo AV, Arner A (2004) Modulation of Ca2+ sensitivity by cyclic nucleotides in smooth muscle from protein kinase G-deficient mice. J Biol Chem 279:5146–5151

    PubMed  CAS  Google Scholar 

  • Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schroder E, Browning DD, Eaton P (2007) Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317:1393–1397

    PubMed  CAS  Google Scholar 

  • Burkhardt M, Glazova M, Gambaryan S, Vollkommer T, Butt E, Bader B, Heermeier K, Lincoln TM, Walter U, Palmetshofer A (2000) KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem 275:33536–33541

    PubMed  CAS  Google Scholar 

  • Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J, Walter U (1994) cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269:14509–14517

    PubMed  CAS  Google Scholar 

  • Butt E, Immler D, Meyer HE, Kotlyarov A, Laass K, Gaestel M (2001) Heat shock protein 27 is a substrate of cGMP-dependent protein kinase in intact human platelets: phosphorylation-induced actin polymerization caused by HSP27 mutants. J Biol Chem 276:7108–7113

    PubMed  CAS  Google Scholar 

  • Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101:812–818

    PubMed  CAS  Google Scholar 

  • Cha B, Kim JH, Hut H, Hogema BM, Nadarja J, Zizak M, Cavet M, Lee-Kwon W, Lohmann SM, Smolenski A, Tse CM, Yun C, de Jonge HR, Donowitz M (2005) cGMP inhibition of Na+H+ Antiporter 3 (NHE3) Requires PDZ Domain Adapter NHERF2, a Broad Specificity Protein Kinase G-anchoring Protein, J Biol Chem 280: 16642–16650

    PubMed  CAS  Google Scholar 

  • Chen J, Kuhlencordt PJ, Astern J, Gyurko R, Huang PL (2001) Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial nitric oxide synthase double knockout mice. Circulation 104:2391–2394

    PubMed  CAS  Google Scholar 

  • Chikuda H, Kugimiya F, Hoshi K, Ikeda T, Ogasawara T, Shimoaka T, Kawano H, Kamekura S, Tsuchida A, Yokoi N, Nakamura K, Komeda K, Chung UI, Kawaguchi H (2004) Cyclic GMP-dependent protein kinase II is a molecular switch from proliferation to hypertrophic differentiation of chondrocytes. Genes Dev 18:2418–2429

    PubMed  CAS  Google Scholar 

  • Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y, Itoh H, Tanaka K, Saito Y, Katsuki M (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci U S A 98:4016–4021

    PubMed  CAS  Google Scholar 

  • Chyu KY, Dimayuga P, Zhu J, Nilsson J, Kaul S, Shah PK, Cercek B (1999) Decreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice. Circ Res 85:1192–1198

    PubMed  CAS  Google Scholar 

  • Cornwell TL, Arnold E, Boerth NJ, Lincoln TM (1994) Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 267:C1405–C1413

    PubMed  CAS  Google Scholar 

  • Daugirdas JT, Zhou HL, Tamulaitis VV, Nutting CW, Fiscus RR (1991) Effect of H-8, an isoquinolinesulfonamide inhibitor of cyclic nucleotide-dependent protein kinase, on cAMP- and cGMP-mediated vasorelaxation. Blood Vessels 28:366–371

    PubMed  CAS  Google Scholar 

  • Detmers PA, Hernandez M, Mudgett J, Hassing H, Burton C, Mundt S, Chun S, Fletcher D, Card DJ, Lisnock J, Weikel R, Bergstrom JD, Shevell DE, Hermanowski-Vosatka A, Sparrow CP, Chao YS, Rader DJ, Wright SD, Pure E (2000) Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice. J Immunol 165:3430– 3435

    PubMed  CAS  Google Scholar 

  • de Vente J, Asan E, Gambaryan S, Markerink-van Ittersum M, Axer H, Gallatz K, Lohmann SM, Palkovits M (2001) Localization of cGMP-dependent protein kinase type II in rat brain. Neuroscience 108:27–49

    PubMed  Google Scholar 

  • D'Souza SP, Davis M, Baxter GF (2004) Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacol Ther 101:113–129

    PubMed  Google Scholar 

  • Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8:1249–1256

    PubMed  CAS  Google Scholar 

  • Eigenthaler M, Lohmann SM, Walter U, Pilz RB (1999) Signal transduction by cGMP-dependent protein kinases and their emerging roles in the regulation of cell adhesion and gene expression. Rev Physiol Biochem Pharmacol 135:173–209

    PubMed  CAS  Google Scholar 

  • el-Husseini AE, Bladen C, Vincent SR (1995) Molecular characterization of a type II cyclic GMP-dependent protein kinase expressed in the rat brain. J Neurochem 64:2814–2817

    Article  PubMed  CAS  Google Scholar 

  • Ellerbroek SM, Wennerberg K, Burridge K (2003) Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278:19023–19031

    PubMed  CAS  Google Scholar 

  • Endo S, Nairn AC, Greengard P, Ito M (2003) Thr123 of rat G-substrate contributes to its action as a protein phosphatase inhibitor. Neurosci Res 45:79–89

    PubMed  CAS  Google Scholar 

  • Essin K, Welling A, Hofmann F, Luft FC, Gollasch M, Moosmang S (2007) Indirect coupling between Cav1.2 channels and ryanodine receptors to generate Ca2+ sparks in murine arterial smooth muscle cells. J Physiol 584:205–219

    PubMed  CAS  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    PubMed  CAS  Google Scholar 

  • Feil R, Gappa N, Rutz M, Schlossmann J, Rose CR, Konnerth A, Brummer S, Kuhbandner S, Hofmann F (2002) Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ Res 90:1080–1086

    PubMed  CAS  Google Scholar 

  • Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F (2003) Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ Res 93:907–916

    PubMed  CAS  Google Scholar 

  • Feil S, Zimmermann P, Knorn A, Brummer S, Schlossmann J, Hofmann F, Feil R (2005) Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience 135:863–868

    PubMed  CAS  Google Scholar 

  • Fiedler B, Lohmann SM, Smolenski A, Linnemuller S, Pieske B, Schroder F, Molkentin JD, Drexler H, Wollert KC (2002) Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci USA 99:11363– 11368

    PubMed  CAS  Google Scholar 

  • Francis SH, Corbin JD (1999) Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 36:275–328

    PubMed  CAS  Google Scholar 

  • Francis SH, Poteet-Smith C, Busch JL, Richie-Jannetta R, Corbin JD (2002) Mechanisms of autoinhibition in cyclic nucleotide-dependent protein kinases. Front Biosci 7:d580–d592

    PubMed  CAS  Google Scholar 

  • Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93:96–105

    PubMed  CAS  Google Scholar 

  • Fukao M, Mason HS, BrittonFC, Kenyon JL, Horowitz B, Keef KD (1999) Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem 274:10927–10935

    PubMed  CAS  Google Scholar 

  • Gambaryan S, Hausler C, Markert T, Pohler D, Jarchau T, Walter U, Haase W, Kurtz A, Lohmann SM (1996) Expression of type II cGMP-dependent protein kinase in rat kidney is regulated by dehydration and correlated with renin gene expression. J Clin Invest 98:662–670

    PubMed  CAS  Google Scholar 

  • Gambaryan S, Butt E, Marcus K, Glazova M, Palmetshofer A, Guillon G, Smolenski A (2003) cGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. J Biol Chem 278:29640–29648

    PubMed  CAS  Google Scholar 

  • Gamm DM, Francis SH, Angelotti TP, Corbin JD, Uhler MD (1995) The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem 270:27380–27388

    PubMed  CAS  Google Scholar 

  • Garbers DL (1992) Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 71:1–4

    PubMed  CAS  Google Scholar 

  • Garbers DL, Dubois SK (1999) The molecular basis of hypertension. Annu Rev Biochem 68:127–155

    PubMed  CAS  Google Scholar 

  • Geiselhöringer A, Gaisa M, Hofmann F, Schlossmann J (2004a) Distribution of IRAG and cGKI-isoforms in murine tissues. FEBS Lett 575:19–22

    Google Scholar 

  • Geiselhöringer A, Werner M, Sigl K, Smital P, Worner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J (2004b) IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. Embo J 23:4222–4231

    Google Scholar 

  • Godecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UK, Stumpe T, Isenberg G, Schrader J (2001) Inotropic response to beta–adrenergic receptor stimulation and anti-adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol 532:195–204

    PubMed  CAS  Google Scholar 

  • Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517

    PubMed  CAS  Google Scholar 

  • Haug LS, Jensen V, Hvalby O, Walaas SI, Ostvold AC (1999) Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in vitro and in rat cerebellar slices in situ. J Biol Chem 274:7467–7473

    PubMed  CAS  Google Scholar 

  • Hauser W, Knobeloch KP, Eigenthaler M, Gambaryan S, Krenn V, Geiger J, Glazova M, Rohde E, Horak I, Walter U, Zimmer M (1999) Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci USA 96:8120–8125

    PubMed  CAS  Google Scholar 

  • Henrich WL, McAllister EA, Smith PB, Campbell WB (1988) Guanosine 3′, 5′-cyclic monophosphate as a mediator of inhibition of renin release. Am J Physiol 255:F474–F478

    PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    PubMed  CAS  Google Scholar 

  • Hirata M, Kohse KP, Chang CH, Ikebe T, Murad F (1990) Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J Biol Chem 265:1268–1273

    PubMed  CAS  Google Scholar 

  • Hofmann F (2005) The biology of cyclic GMP-dependent protein kinases. J Biol Chem 280:1–4

    PubMed  CAS  Google Scholar 

  • Hofmann F, Gensheimer HP, Gobel C (1985) cGMP-dependent protein kinase. Autophosphorylation changes the characteristics of binding site 1. Eur J Biochem 147:361–365

    PubMed  CAS  Google Scholar 

  • Hofmann F, Biel M, Feil R, Kleppisch T (2004) Mouse models of NO/natriuretic peptide/cGMP kinase signaling. In: Offermanns S (ed) Handbook of experimental pharmacology (Transgenic models in pharmacology). Elsevier, Amsterdam, pp 95–130

    Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    PubMed  CAS  Google Scholar 

  • Holtwick R, Van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407

    PubMed  CAS  Google Scholar 

  • Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    PubMed  CAS  Google Scholar 

  • Huber A, Neuhuber WL, Klugbauer N, Ruth P, Allescher HD (2000) Cysteine-rich protein 2, a novel substrate for cGMP kinase I in enteric neurons and intestinal smooth muscle. J Biol Chem 275:5504–5511

    PubMed  CAS  Google Scholar 

  • Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    PubMed  CAS  Google Scholar 

  • John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681

    PubMed  CAS  Google Scholar 

  • Karim MA, Ohta K, Egashira M, Jinno Y, Niikawa N, Matsuda I, Indo Y (1996) Human ESP1/CRP2, a member of the LIM domain protein family: characterization of the cDNA and assignment of the gene locus to chromosome 14q32.3. Genomics 31:167–176

    PubMed  CAS  Google Scholar 

  • Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3:23–35

    PubMed  CAS  Google Scholar 

  • Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292:C59–C69

    PubMed  CAS  Google Scholar 

  • Kawasaki Y, Kugimiya F, Chikuda H, Kamekura S, Ikeda T, Kawamura N, Saito T, Shinoda Y, Higashikawa A, Yano F, Ogasawara T, Ogata N, Hoshi K, Hofmann F, Woodgett JR, Nakamura K, Chung U, Kawaguchi H (2008). Phosphorylation of GSK-3ß by cyclic GMP-dependent protein kinase II promotes chondrocyte hypertrophy and skeletal growth. J Clin Invest 118:2506–2515

    PubMed  CAS  Google Scholar 

  • Keilbach A, Ruth P, Hofmann F (1992) Detection of cGMP dependent protein kinase isozymes by specific antibodies. Eur J Biochem 208:467–473

    PubMed  CAS  Google Scholar 

  • Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci U S A 98:2703–2706

    PubMed  CAS  Google Scholar 

  • Knowles JW, Reddick RL, Jennette JC, Shesely EG, Smithies O, Maeda N (2000) Enhanced atherosclerosis and kidney dysfunction in eNOS(−/−)Apoe(−/−) mice are ameliorated by enalapril treatment. J Clin Invest 105:451–458

    PubMed  CAS  Google Scholar 

  • Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107:975–984

    PubMed  CAS  Google Scholar 

  • Koeppen M, Feil R, Siegl D, Feil S, Hofmann F, Pohl U, de Wit C (2004) cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension 44:952–955

    PubMed  CAS  Google Scholar 

  • Koglin J, Glysing-Jensen T, Mudgett JS, Russell ME (1998) Exacerbated transplant arteriosclerosis in inducible nitric oxide- deficient mice. Circulation 97:2059–2065

    PubMed  CAS  Google Scholar 

  • Koller A, Schlossmann J, Ashman K, Uttenweiler-Joseph S, Ruth P, Hofmann F (2003) Association of phospholamban with a cGMP kinase signaling complex. Biochem Biophys Res Commun 300:155–160

    PubMed  CAS  Google Scholar 

  • Kuhlencordt PJ, Chen J, Han F, Astern J, Huang PL (2001a) Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation 103:3099–3104

    CAS  Google Scholar 

  • Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH, Huang PL (2001b) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104:448–454

    CAS  Google Scholar 

  • Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709

    PubMed  CAS  Google Scholar 

  • Kuhn M (2005) Cardiac and intestinal natriuretic peptides: insights from genetically modified mice. Peptides 26:1078–1085

    PubMed  CAS  Google Scholar 

  • Kurtz A, Gotz KH, Hamann M, Wagner C (1998) Stimulation of renin secretion by nitric oxide is mediated by phosphodiesterase 3. Proc Natl Acad Sci U S A 95:4743–4747

    PubMed  CAS  Google Scholar 

  • Kwan HY, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 101:2625–2630

    PubMed  CAS  Google Scholar 

  • Lablanche JM, Grollier G, Lusson JR, Bassand JP, Drobinski G, Bertrand B, Battaglia S, Desveaux B, Juilliere Y, Juliard JM, Metzger JP, Coste P, Quiret JC, Dubois-Rande JL, Crochet PD, Letac B, Boschat J, Virot P, Finet G, Le Breton H, Livarek B, Leclercq F, Beard T, Giraud T, Bertrand ME, et al (1997) Effect of the direct nitric oxide donors linsidomine and molsidomine on angiographic restenosis after coronary balloon angioplasty. The ACCORD Study. Angioplastic Coronaire Corvasal Diltiazem. Circulation 95:83–89

    Google Scholar 

  • Lalli MJ, Shimizu S, Sutliff RL, Kranias EG, Paul RJ (1999) [Ca2+]i homeostasis and cyclic nucleotide relaxation in aorta of phospholamban-deficient mice. Am J Physiol 277:H963–H970

    PubMed  CAS  Google Scholar 

  • Landgraf W, Hofmann F, Pelton JT, Huggins JP (1990) Effects of cyclic GMP on the secondary structure of cyclic GMP dependent protein kinase and analysis of the enzyme's amino-terminal domain by far-ultraviolet circular dichroism. Biochemistry 29:9921–9928

    PubMed  CAS  Google Scholar 

  • Landgraf W, Regulla S, Meyer HE, Hofmann F (1991) Oxidation of cysteines activates cGMP-dependent protein kinase. J Biol Chem 266:16305–16311

    PubMed  CAS  Google Scholar 

  • Lee MR, Li L, Kitazawa T (1997) Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J Biol Chem 272:5063–5068

    PubMed  CAS  Google Scholar 

  • Lincoln TM (2004) Cyclic GMP and phosphodiesterase 5 inhibitor therapies: what's on the horizon? Mol Pharmacol 66:11–13

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Dey N, Sellak H (2001) Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91:1421–1430

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Wu X, Sellak H, Dey N, Choi CS (2006) Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Front Biosci 11:356–367

    PubMed  CAS  Google Scholar 

  • Lindsay SL, Ramsey S, Aitchison M, Renne T, Evans TJ (2007) Modulation of lamellipodial structure and dynamics by NO-dependent phosphorylation of VASP Ser239. J Cell Sci 120:3011– 3021

    PubMed  CAS  Google Scholar 

  • Liu N, Olson EN (2006) Coactivator control of cardiovascular growth and remodeling. Curr Opin Cell Biol 18:715–722

    PubMed  CAS  Google Scholar 

  • Lloyd-Jones DM, Bloch KD (1996) The vascular biology of nitric oxide and its role in atherogenesis. Annu Rev Med 47:365–375

    PubMed  CAS  Google Scholar 

  • Lohmann SM, Walter U (2005) Tracking functions of cGMP-dependent protein kinases (cGK). Front Biosci 10:1313–1328

    PubMed  CAS  Google Scholar 

  • Lohmann SM, Walter U, Miller PE, Greengard P, De Camilli P (1981) Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proc Natl Acad Sci U S A 78:653–657

    PubMed  CAS  Google Scholar 

  • Lohmann SM, Vaandrager AB, Smolenski A, Walter U, De Jonge HR (1997) Distinct and specific functions of cGMP-dependent protein kinases. Trends Biochem Sci 22:307–312

    PubMed  CAS  Google Scholar 

  • Lukowski R, Weinmeister P, Bernhard D, Feil S, Gotthardt M, Herz J, Massberg S, Zernecke A, Weber C, Hofmann F, Feil R (2008) Role of smooth muscle cGMP/cGKI signaling in murine vascular restenosis. Arterioscler Thromb Vasc Biol 28(7):1207–1208

    Google Scholar 

  • MacFarland RT, Zelus BD, Beavo JA (1991) High concentrations of a cGMP-stimulated phospho-diesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem 266:136–142

    PubMed  CAS  Google Scholar 

  • Marshall SJ, Senis YA, Auger JM, Feil R, Hofmann F, Salmon G, Peterson JT, Burslem F, Watson SP (2004) GPIb-dependent platelet activation is dependent on Src kinases but not MAP kinase or cGMP-dependent kinase. Blood 103:2601–2609

    PubMed  CAS  Google Scholar 

  • Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398

    PubMed  CAS  Google Scholar 

  • Mathur A, Golombek DA, Ralph MR (1996) cGMP–dependent protein kinase inhibitors block light-induced phase advances of circadian rhythms in vivo. Am J Physiol 270:R1031–R1036

    PubMed  CAS  Google Scholar 

  • Meinecke M, Geiger J, Butt E, Sandberg M, Jahnsen T, Chakraborty T, Walter U, Jarchau T, Lohmann SM (1994) Human cyclic GMP-dependent protein kinase I beta overexpression increases phosphorylation of an endogenous focal contact-associated vasodilator-stimulated phosphoprotein without altering the thrombin-evoked calcium response. Mol Pharmacol 46:283–290

    PubMed  CAS  Google Scholar 

  • Mery PF, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A 88:1197–1201

    PubMed  CAS  Google Scholar 

  • Michael SK, Surks HK, Wang Y, Zhu Y, Blanton R, Jamnongjit M, Aronovitz M, Baur W, Ohtani K, Wilkerson MK, Bonev AD, Nelson MT, Karas RH, Mendelsohn ME (2008) High blood pressure arising from a defect in vascular function. Proc Natl Acad Sci U S A 105:6702–6707

    PubMed  CAS  Google Scholar 

  • Miyazawa T, Ogawa Y, Chusho H, Yasoda A, Tamura N, Komatsu Y, Pfeifer A, Hofmann F, Nakao K (2002) Cyclic GMP-dependent protein kinase II plays a critical role in C-type natriuretic peptide-mediated endochondral ossification. Endocrinology 143:3604–3610

    PubMed  CAS  Google Scholar 

  • Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N (2003) Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. Embo J 22:6027–6034

    PubMed  CAS  Google Scholar 

  • Moroi M, Zhang L, Yasuda T, Virmani R, Gold HK, Fishman MC, Huang PL (1998) Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. J Clin Invest 101:1225–1232

    PubMed  CAS  Google Scholar 

  • Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D (2003) Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling. J Cell Biol 160:719–727

    PubMed  CAS  Google Scholar 

  • Nakano Y, Nagamatsu Y, Ohshima Y (2004) cGMP and a germ-line signal control body size in C. elegans through cGMP-dependent protein kinase EGL-4. Genes Cells 9:773–779

    PubMed  CAS  Google Scholar 

  • Nikolaev VO, Gambaryan S, Engelhardt S, Walter U, Lohse MJ (2005) Real-time monitoring of the PDE2 activity of live cells: hormone-stimulated cAMP hydrolysis is faster than hormone-stimulated cAMP synthesis. J Biol Chem 280:1716–1719

    PubMed  CAS  Google Scholar 

  • Okano I, Yamamoto T, Kaji A, Kimura T, Mizuno K, Nakamura T (1993) Cloning of CRP2, a novel member of the cysteine-rich protein family with two repeats of an unusual LIM/double zinc-finger motif. FEBS Lett 333:51–55

    PubMed  CAS  Google Scholar 

  • Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A 94:14730–14735

    PubMed  CAS  Google Scholar 

  • Orstavik S, Natarajan V, Tasken K, Jahnsen T, Sandberg M (1997) Characterization of the human gene encoding the type I alpha and type I beta cGMP-dependent protein kinase (PRKG1). Genomics 42:311–318

    PubMed  CAS  Google Scholar 

  • Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U (2003) cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol 13:725–733

    PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    PubMed  CAS  Google Scholar 

  • Ozaki M, Kawashima S, Yamashita T, Hirase T, Namiki M, Inoue N, Hirata K, Yasui H, Sakurai H, Yoshida Y, Masada M, Yokoyama M (2002) Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest 110:331–340

    PubMed  CAS  Google Scholar 

  • Parker JD, Parker JO (1998) Nitrate therapy for stable angina pectoris. N Engl J Med 338:520–531

    PubMed  CAS  Google Scholar 

  • Pedram A, Razandi M, Kehrl J, Levin ER (2000) Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J Biol Chem 275:7365–7372

    PubMed  CAS  Google Scholar 

  • Pfeifer A, Aszodi A, Seidler U, Ruth P, Hofmann F, Fassler R (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP- dependent protein kinase II. Science 274:2082–2086

    PubMed  CAS  Google Scholar 

  • Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszodi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fassler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. Embo J 17:3045–3051

    PubMed  CAS  Google Scholar 

  • Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F (1999) Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol 135:105–149

    PubMed  CAS  Google Scholar 

  • Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93:1034–1046

    PubMed  CAS  Google Scholar 

  • Poon BY, Raharjo E, Patel KD, Tavener S, Kubes P (2003) Complexity of inducible nitric oxide synthase: cellular source determines benefit versus toxicity. Circulation 108:1107–1112

    PubMed  CAS  Google Scholar 

  • Pryzwansky KB, Wyatt TA, Lincoln TM (1995) Cyclic guanosine monophosphate-dependent protein kinase is targeted to intermediate filaments and phosphorylates vimentin in A23187-stimulated human neutrophils. Blood 85:222–230

    PubMed  CAS  Google Scholar 

  • Raeymaekers L, Hofmann F, Casteels R (1988) Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. Biochem J 252:269–273

    PubMed  CAS  Google Scholar 

  • Ramamoorthy S, Samuvel DJ, Buck ER, Rudnick G, Jayanthi LD (2007) Phosphorylation of thre-onine residue 276 is required for acute regulation of serotonin transporter by cyclic GMP. J Biol Chem 282:11639–11647

    PubMed  CAS  Google Scholar 

  • Reid HM, Kinsella BT (2003) The alpha, but not the beta, isoform of the human thromboxane A2 receptor is a target for nitric oxide-mediated desensitization. Independent modulation of Tp alpha signaling by nitric oxide and prostacyclin. J Biol Chem 278:51190–51202

    PubMed  CAS  Google Scholar 

  • Revermann M, Maronde E, Ruth P, Korf HW (2002) Protein kinase G I immunoreaction is colocalized with arginine-vasopressin immunoreaction in the rat suprachiasmatic nucleus. Neurosci Lett 334:119–122

    PubMed  CAS  Google Scholar 

  • Robertson BE, Schubert R, Hescheler J, Nelson MT (1993) cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265:C299– C303

    PubMed  CAS  Google Scholar 

  • Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC (1998) Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101:731–736

    PubMed  CAS  Google Scholar 

  • Ruth P, Wang GX, Boekhoff I, May B, Pfeifer A, Penner R, Korth M, Breer H, Hofmann F (1993) Transfected cGMP-dependent protein kinase suppresses calcium transients by inhibition of inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci U S A 90:2623–2627

    PubMed  CAS  Google Scholar 

  • Ruth P, Pfeifer A, Kamm S, Klatt P, Dostmann WR, Hofmann F (1997) Identification of the aminoacid sequences responsible for high affinity activation of cGMP kinase Ialpha. J Biol Chem 272:10522–10528

    PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA (2002) Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem 277:3310– 3317

    PubMed  CAS  Google Scholar 

  • Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 93:280–291

    PubMed  CAS  Google Scholar 

  • Sandberg M, Natarajan V, Ronander I, Kalderon D, Walter U, Lohmann SM, Jahnsen T (1989) Molecular cloning and predicted full-length amino acid sequence of the type I beta isozyme of cGMP-dependent protein kinase from human placenta. Tissue distribution and developmental changes in rat. FEBS Lett 255:321–329

    PubMed  CAS  Google Scholar 

  • Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M, Kleppisch T, Ruth P, Hofmann F (2000) Mechanisms of NO/cGMP-dependent vasorelaxation. Circ Res 87:825–830

    PubMed  CAS  Google Scholar 

  • Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit-Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P (2005) Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation 112:60–68

    PubMed  CAS  Google Scholar 

  • Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 275:21722–21729

    PubMed  CAS  Google Scholar 

  • Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404:197–201

    PubMed  CAS  Google Scholar 

  • Schmidtko A, Gao W, Sausbier M, Grundei I, Niederberger E, Scholich K, Hofmann F, Ruth P, Geisslinger G (2008) Cysteine-rich protein 2, a novel downstream effector of cGMP/cGMP-dependent kinase I mediated persistent inflammatory pain. J Neurosci 28:1320–1330

    PubMed  CAS  Google Scholar 

  • Schricker K, Kurtz A (1993) Liberators of NO exert a dual effect on renin secretion from isolated mouse renal juxtaglomerular cells. Am J Physiol 265:F180–F186

    PubMed  CAS  Google Scholar 

  • Schroder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, Ames S, Gambaryan S, Drexler H, Walter U, Lohmann SM, Wollert KC (2003) Single L-type Ca(2+) channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 60:268–277

    PubMed  CAS  Google Scholar 

  • Schultess J, Danielewski O, Smolenski AP (2005) Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets. Blood 105:3185–3192

    PubMed  CAS  Google Scholar 

  • Schwartz SM, deBlois D, O'Brien ER (1995) The intima. Soil for atherosclerosis and restenosis. Circ Res 77:445–465

    PubMed  CAS  Google Scholar 

  • Sennlaub F, Courtois Y, Goureau O (2001) Inducible nitric oxide synthase mediates the change from retinal to vitreal neovascularization in ischemic retinopathy. J Clin Invest 107:717–725

    PubMed  CAS  Google Scholar 

  • Shi W, Wang X, Shih DM, Laubach VE, Navab M, Lusis AJ (2002) Paradoxical reduction of fatty streak formation in mice lacking endothelial nitric oxide synthase. Circulation 105:2078–2082

    PubMed  CAS  Google Scholar 

  • Sinnaeve P, Chiche JD, Gillijns H, Van Pelt N, Wirthlin D, Van De Werf F, Collen D, Bloch KD, Janssens S (2002) Overexpression of a constitutively active protein kinase G mutant reduces neointima formation and in-stent restenosis. Circulation 105:2911–2916

    PubMed  CAS  Google Scholar 

  • Smith JA, Francis SH, Walsh KA, Kumar S, Corbin JD (1996) Autophosphorylation of type Ibeta cGMP-dependent protein kinase increases basal catalytic activity and enhances allosteric activation by cGMP or cAMP. J Biol Chem 271:20756–20762

    PubMed  CAS  Google Scholar 

  • Smith JA, Reed RB, Francis SH, Grimes K, Corbin JD (2000) Distinguishing the roles of the two different cGMP-binding sites for modulating phosphorylation of exogenous substrate (heterophosphorylation) and autophosphorylation of cGMP-dependent protein kinase. J Biol Chem 275:154–158

    PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    PubMed  CAS  Google Scholar 

  • Stein BC, Levin RI (1998) Natriuretic peptides: physiology, therapeutic potential, and risk stratification in ischemic heart disease. Am Heart J 135:914–923

    PubMed  CAS  Google Scholar 

  • Sun X, Kaltenbronn KM, Steinberg TH, Blumer KJ (2005) RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling. Mol Pharmacol 67:631–639

    PubMed  CAS  Google Scholar 

  • Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286:1583–1587

    PubMed  CAS  Google Scholar 

  • Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222

    PubMed  CAS  Google Scholar 

  • Talts JF, Pfeifer A, Hofmann F, Hunziker EB, Zhou XH, Aszodi A, Fassler R (1998) Endochondral ossification is dependent on the mechanical properties of cartilage tissue and on intracellular signals in chondrocytes. Ann N Y Acad Sci 857:74–85

    PubMed  CAS  Google Scholar 

  • Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    PubMed  CAS  Google Scholar 

  • Tischkau SA, Mitchell JW, Pace LA, Barnes JW, Barnes JA, Gillette MU (2004) Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. Neuron 43:539–549

    PubMed  CAS  Google Scholar 

  • Tolbert T, Thompson JA, Bouchard P, Oparil S (2001) Estrogen-induced vasoprotection is independent of inducible nitric oxide synthase expression: evidence from the mouse carotid artery ligation model. Circulation 104:2740–2745

    PubMed  CAS  Google Scholar 

  • Vaandrager AB, Smolenski A, Tilly BC, Houtsmuller AB, Ehlert EM, Bot AG, Edixhoven M, Boomaars WE, Lohmann SM, de Jonge HR (1998) Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc Natl Acad Sci U S A 95:1466–1471

    PubMed  CAS  Google Scholar 

  • Vaandrager AB, Bot AG, Ruth P, Pfeifer A, Hofmann F, De Jonge HR (2000) Differential role of cyclic GMP-dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology 118:108–114

    PubMed  CAS  Google Scholar 

  • Vaandrager AB, Hogema BM, Edixhoven M, van den Burg CM, Bot AG, Klatt P, Ruth P, Hofmann F, Van Damme J, Vandekerckhove J, de Jonge HR (2003) Autophosphorylation of cGMP- dependent protein kinase type II. J Biol Chem 278:28651–28658

    PubMed  CAS  Google Scholar 

  • Vandecasteele G, Eschenhagen T, Scholz H, Stein B, Verde I, Fischmeister R (1999) Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 5:331–334

    PubMed  CAS  Google Scholar 

  • Wagner C, Pfeifer A, Ruth P, Hofmann F, Kurtz A (1998) Role of cGMP-kinase II in the control of renin secretion and renin expression. J Clin Invest 102:1576–1582

    PubMed  CAS  Google Scholar 

  • Wagner LE, II, Li WH, Yule DI (2003) Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2+ and S2− splice variants. J Biol Chem 278:45811–45817

    PubMed  CAS  Google Scholar 

  • Walker LA, MacDonald JA, Liu X, Nakamoto RK, Haystead TA, Somlyo AV, Somlyo AP (2001) Site-specific phosphorylation and point mutations of telokin modulate its Ca2+-desensitizing effect in smooth muscle. J Biol Chem 276:24519–24524

    PubMed  CAS  Google Scholar 

  • Wall ME, Francis SH, Corbin JD, Grimes K, Richie-Jannetta R, Kotera J, Macdonald BA, Gibson RR, Trewhella J (2003) Mechanisms associated with cGMP binding and activation of cGMP- dependent protein kinase. Proc Natl Acad Sci U S A 100:2380–2385

    PubMed  CAS  Google Scholar 

  • Weber ET, Gannon RL, Rea MA (1995) cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci Lett 197:227–230

    PubMed  CAS  Google Scholar 

  • Weber ET, Gannon RL, Rea MA (1995) cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci Lett 197:227–230

    PubMed  CAS  Google Scholar 

  • Weber S, Bernhard D, Lukowski R, Weinmeister P, Worner R, Wegener JW, Valtcheva N, Feil S, Schlossmann J, Hofmann F, Feil R (2007) Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ Res 101:1096–1103

    PubMed  CAS  Google Scholar 

  • Wegener JW, Nawrath H, Wolfsgruber W, Kuhbandner S, Werner C, Hofmann F, Feil R (2002) cGMP-dependent protein kinase I mediates the negative inotropic effect of cGMP in the murine myocardium. Circ Res 90:18–20

    PubMed  CAS  Google Scholar 

  • Wegener JW, Schulla V, Lee TS, Koller A, Feil S, Feil R, Kleppisch T, Klugbauer N, Moosmang S, Welling A, Hofmann F (2004) An essential role of Cav1.2 L-type calcium channel for urinary bladder function. Faseb J 18:1159–1161

    PubMed  CAS  Google Scholar 

  • Weinmeister P, Lukowski R, Linder S, Traidl-Hoffmann C, Hengst L, Hofmann F, Feil R (2008) cGMP-dependent protein kinase I promotes adhesion of primary vascular smooth muscle cell. Mol Biol Cell 19:4434–4441

    PubMed  CAS  Google Scholar 

  • Werner C, Raivich G, Cowen M, Strekalova T, Sillaber I, Buters JT, Spanagel R, Hofmann F (2004) Importance of NO/cGMP signalling via cGMP-dependent protein kinase II for controlling emotionality and neurobehavioural effects of alcohol. Eur J Neurosci 20:3498–3506

    PubMed  Google Scholar 

  • Wernet W, Flockerzi V, Hofmann F (1989) The cDNA of the two isoforms of bovine cGMP- dependent protein kinase. FEBS Lett 251:191–196

    PubMed  CAS  Google Scholar 

  • White RE, Lee AB, Shcherbatko AD, Lincoln TM, Schonbrunn A, Armstrong DL (1993) Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature 361:263–266

    PubMed  CAS  Google Scholar 

  • Wolfe L, Corbin JD, Francis SH (1989) Characterization of a novel isozyme of cGMP-dependent protein kinase from bovine aorta. J Biol Chem 264:7734–7741

    PubMed  CAS  Google Scholar 

  • Wollert KC, Fiedler B, Gambaryan S, Smolenski A, Heineke J, Butt E, Trautwein C, Lohmann SM, Drexler H (2002) Gene transfer of cGMP-dependent protein kinase I enhances the antihy-pertrophic effects of nitric oxide in cardiomyocytes. Hypertension 39:87–92

    PubMed  CAS  Google Scholar 

  • Wollert KC, Yurukova S, Kilic A, Begrow F, Fiedler B, Gambaryan S, Walter U, Lohmann SM, Kuhn M (2003) Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I. Br J Pharmacol 140:1227–1236

    PubMed  CAS  Google Scholar 

  • Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TA (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem 279:34496–34504

    PubMed  CAS  Google Scholar 

  • Wyatt TA, Lincoln TM, Pryzwansky KB (1991a) Vimentin is transiently co-localized with and phosphorylated by cyclic GMP-dependent protein kinase in formyl-peptide-stimulated neutrophils. J Biol Chem 266:21274–21280

    CAS  Google Scholar 

  • Wyatt TA, Pryzwansky KB, Lincoln TM (1991b) KT5823 activates human neutrophils and fails to inhibit cGMP-dependent protein kinase phosphorylation of vimentin. Res Commun Chem Pathol Pharmacol 74:3–14

    CAS  Google Scholar 

  • Xia C, Bao Z, Yue C, Sanborn BM, Liu M (2001) Phosphorylation and regulation of G-protein-activated phospholipase C-beta 3 by cGMP-dependent protein kinases. J Biol Chem 276:19770–19777

    PubMed  CAS  Google Scholar 

  • Xue J, Milburn PJ, Hanna BT, Graham ME, Rostas JA, Robinson PJ (2004) Phosphorylation of septin 3 on Ser-91 by cGMP-dependent protein kinase-I in nerve terminals. Biochem J 381:753–760

    PubMed  CAS  Google Scholar 

  • Yang L, Liu G, Zakharov SI, Bellinger AM, Mongillo M, Marx SO (2007) Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits. Circ Res 101:465–474

    PubMed  CAS  Google Scholar 

  • Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, Miura M, Kurihara T, Rogi T, Tanaka S, Suda M, Tamura N, Ogawa Y, Nakao K (2004) Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10:80–86

    PubMed  CAS  Google Scholar 

  • Zhang T, Zhuang S, Casteel DE, Looney DJ, Boss GR, Pilz RB (2007) A cysteine-rich LIM-only protein mediates regulation of smooth muscle-specific gene expression by cGMP-dependent protein kinase. J Biol Chem 282:33367–33380

    PubMed  CAS  Google Scholar 

  • Zhao J, Trewhella J, Corbin J, Francis S, Mitchell R, Brushia R, Walsh D (1997) Progressive cyclic nucleotide-induced conformational changes in the cGMP-dependent protein kinase studied by small angle X-ray scattering in solution. J Biol Chem 272:31929–31936

    PubMed  CAS  Google Scholar 

  • Zhao X, Zhuang S, Chen Y, Boss GR, Pilz RB (2005) Cyclic GMP-dependent protein kinase regulates CCAAT enhancer-binding protein beta functions through inhibition of glycogen synthase kinase-3. J Biol Chem 280:32683–32692

    PubMed  CAS  Google Scholar 

  • Zhou XB, Ruth P, Schlossmann J, Hofmann F, Korth M (1996) Protein phosphatase 2A is essential for the activation of Ca2+-activated K+ currents by cGMP-dependent protein kinase in tracheal smooth muscle and Chinese hamster ovary cells. J Biol Chem 271:19760–19767

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Hofmann, F., Bernhard, D., Lukowski, R., Weinmeister, P. (2009). cGMP Regulated Protein Kinases (cGK). In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_8

Download citation

Publish with us

Policies and ethics