Skip to main content
Log in

Nitric oxide insufficiency and atherothrombosis

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a structurally simple compound that participates in a wide range of biological reactions to maintain normal endothelial function and an antithrombotic intravascular milieu. Among its principal effects are the regulation of vascular tone, vascular smooth muscle cell proliferation, endothelial–leukocyte interactions, and the antiplatelet effects of the endothelium. Impaired NO bioavailability represents the central feature of endothelial dysfunction, the earliest stage in the atherosclerotic process, and also contributes to the pathogenesis of acute vascular syndromes by predisposing to intravascular thrombosis. The causes of NO insufficiency can be grouped into two fundamental mechanisms: inadequate synthesis and increased inactivation of NO. Polymorphisms in the endothelial NO synthase gene and decreased substrate or cofactor availability for this enzyme are the main mechanisms that compromise the synthesis of NO. Inactivation of NO occurs mainly through its interaction with reactive oxygen species and can be favored by a deficiency of antioxidant enzymes such as glutathione peroxidase. In this review, we present an overview of NO synthesis and biological chemistry, discuss the mechanisms of action of NO in regulating endothelial and platelet function, and explore the causes of NO insufficiency, as well as the evidence linking these causes to the pathophysiology of endothelial dysfunction and atherothrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez B, Rubbo H, Kirk M, Barnes S, Freeman BA, Radi R (1996) Peroxynitrite-dependent tryptophan nitration. Chem Res Toxicol 9:390–396

    Article  CAS  PubMed  Google Scholar 

  • Battinelli EM, Loscalzo J (2000) Nitric oxide and platelet-mediated hemostasis. In: Loscalzo J, Vita JA (eds) Nitric oxide and the cardiovascular system. Humana, Totowa, NJ, pp 123–138

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    CAS  PubMed  Google Scholar 

  • Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annu Rev Nutr 21:453–473

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349:1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Boger RH (2003) Association of asymmetric dimethylarginine and endothelial dysfunction. Clin Chem Lab Med 41:1467–1472

    PubMed  Google Scholar 

  • Boger RH, Bode-Boger SM, Mugge A, Kienke S, Brandes R, Dwenger A, Frolich JC (1995) Supplementation of hypercholesterolaemic rabbits with l-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis 117:273–284

    Article  CAS  PubMed  Google Scholar 

  • Boger RH, Bode-Boger SM, Thiele W, Junker W, Alexander K, Frolich JC (1997) Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation 95:2068–2074

    CAS  PubMed  Google Scholar 

  • Boger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98:1842–1847

    CAS  PubMed  Google Scholar 

  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    Google Scholar 

  • Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD (1987) Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 79:170–174

    CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Google Scholar 

  • Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424:37–49

    Article  CAS  PubMed  Google Scholar 

  • Busse R, Mulsch A (1990) Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett 265:133–136

    Article  CAS  PubMed  Google Scholar 

  • Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    Google Scholar 

  • Chang K, Baek SH, Seung KB, Kim PJ, Ihm SH, Chae JS, Kim JH, Hong SJ, Choi KB (2003) The Glu298Asp polymorphism in the endothelial nitric oxide synthase gene is strongly associated with coronary spasm. Coron Artery Dis 14:293–299

    Article  PubMed  Google Scholar 

  • Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17

    CAS  PubMed  Google Scholar 

  • Chin JH, Azhar S, Hoffman BB (1992) Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest 89:10–18

    CAS  PubMed  Google Scholar 

  • Clarkson P, Adams MR, Powe AJ, Donald AE, McCredie R, Robinson J, McCarthy SN, Keech A, Celermajer DS, Deanfield JE (1996) Oral l-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 97:1989–1994

    CAS  PubMed  Google Scholar 

  • Clarkson P, Celermajer DS, Powe AJ, Donald AE, Henry RM, Deanfield JE (1997) Endothelium-dependent dilatation is impaired in young healthy subjects with a family history of premature coronary disease. Circulation 96:3378–3383

    CAS  PubMed  Google Scholar 

  • Cohen RA, Weisbrod RM, Gericke M, Yaghoubi M, Bierl C, Bolotina VM (1999) Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res 84:210–219

    CAS  PubMed  Google Scholar 

  • Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 9:899–909

    CAS  PubMed  Google Scholar 

  • Cooke JP (2000) Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 20:2032–2037

    CAS  PubMed  Google Scholar 

  • Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME (1992) Antiatherogenic effects of l-arginine in the hypercholesterolemic rabbit. J Clin Invest 90:1168–1172

    CAS  PubMed  Google Scholar 

  • Cooper D, Stokes KY, Tailor A, Granger DN (2002) Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol 2:165–180

    Article  CAS  PubMed  Google Scholar 

  • Cosentino F, Katusic ZS (1995) Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation 91:139–144

    CAS  PubMed  Google Scholar 

  • Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP (1992) l-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 90:1248–1253

    CAS  PubMed  Google Scholar 

  • Douki T, Cadet J (1996) Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic Res 24:369–380

    CAS  PubMed  Google Scholar 

  • Drexler H, Zeiher AM, Meinzer K, Just H (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by l-arginine. Lancet 338:1546–1550

    Google Scholar 

  • Eberhardt RT, Loscalzo J (2000) Nitric oxide in atherosclerosis. In: Loscalzo J, Vita JA (eds) Nitric oxide and the cardiovascular system. Humana, Totowa, NJ, pp 273–295

  • Egashira K, Katsuda Y, Mohri M, Kuga T, Tagawa T, Shimokawa H, Takeshita A (1996) Basal release of endothelium-derived nitric oxide at site of spasm in patients with variant angina. J Am Coll Cardiol 27:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Engelman DT, Watanabe M, Maulik N, Cordis GA, Engelman RM, Rousou JA, Flack JE III, Deaton DW, Das DK (1995) l-arginine reduces endothelial inflammation and myocardial stunning during ischemia/reperfusion. Ann Thorac Surg 60:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H (1996) DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res 24:4105–4110

    Article  CAS  PubMed  Google Scholar 

  • Feelisch M, Rassaf T, Mnaimneh S, Singh N, Bryan NS, Jourd’Heuil D, Kelm M (2002) Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J 16:1775–1785

    Article  CAS  PubMed  Google Scholar 

  • Feron O, Michel T (2000) Cell and molecular biology of nitric oxide synthases. In: Loscalzo J, Vita JA (eds) Contemporary cardiology, vol 4. Nitric oxide and the cardiovascular system. Humana, Totowa, NJ, pp 11–31

  • Ferraresso M, Burra P, Cadrobbi R, Calabrese F, Pettenazzo E, Sarzo G, Parnigotto A, Bacelle L, Rigotti P (1997) Protective effect of l-arginine on liver ischemia-reperfusion injury. Transplant Proc 29:393–394

    Article  CAS  PubMed  Google Scholar 

  • Floris R, Piersma SR, Yang G, Jones P, Wever R (1993) Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase. Eur J Biochem 215:767–775

    CAS  PubMed  Google Scholar 

  • Folts J (1991) An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis. Circulation 83: IV3–14

    Google Scholar 

  • Folts JD, Stamler J, Loscalzo J (1991) Intravenous nitroglycerin infusion inhibits cyclic blood flow responses caused by periodic platelet thrombus formation in stenosed canine coronary arteries. Circulation 83:2122–2127

    Google Scholar 

  • Forgione MA, Cap A, Liao R, Moldovan NI, Eberhardt RT, Lim CC, Jones J, Goldschmidt-Clermont PJ, Loscalzo J (2002a) Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation 106:1154–1158

    Article  CAS  PubMed  Google Scholar 

  • Forgione MA, Weiss N, Heydrick S, Cap A, Klings ES, Bierl C, Eberhardt RT, Farber HW, Loscalzo J (2002b) Cellular glutathione peroxidase deficiency and endothelial dysfunction. Am J Physiol Heart Circ Physiol 282:H1255–H1261

    CAS  PubMed  Google Scholar 

  • Freedman JE, Loscalzo J (2003) Nitric oxide and its relationship to thrombotic disorders. J Thromb Haemost 1:1183–1188

    Article  CAS  PubMed  Google Scholar 

  • Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD (1996) Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 97:979–987

    CAS  PubMed  Google Scholar 

  • Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Michelson AD (1997) Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest 100:350–356

    CAS  PubMed  Google Scholar 

  • Freedman JE, Ting B, Hankin B, Loscalzo J, Keaney JF Jr, Vita JA (1998) Impaired platelet production of nitric oxide predicts presence of acute coronary syndromes. Circulation 98:1481–1486

    CAS  PubMed  Google Scholar 

  • Freedman JE, Sauter R, Battinelli EM, Ault K, Knowles C, Huang PL, Loscalzo J (1999) Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ Res 84:1416–1421

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  PubMed  Google Scholar 

  • Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777

    CAS  PubMed  Google Scholar 

  • Gayle RB III, Maliszewski CR, Gimpel SD, Schoenborn MA, Caspary RG, Richards C, Brasel K, Price V, Drosopoulos JH, Islam N, Alyonycheva TN, Broekman MJ, Marcus AJ (1998) Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J Clin Invest 101:1851–1859

    CAS  PubMed  Google Scholar 

  • Gomma AH, Elrayess MA, Knight CJ, Hawe E, Fox KM, Humphries SE (2002) The endothelial nitric oxide synthase (Glu298Asp and –786T>C) gene polymorphisms are associated with coronary in-stent restenosis. Eur Heart J 23:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Goonasekera CD, Rees DD, Woolard P, Frend A, Shah V, Dillon MJ (1997) Nitric oxide synthase inhibitors and hypertension in children and adolescents. J Hypertens 15:901–909

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  • Groves JT (1999) Peroxynitrite: reactive, invasive and enigmatic. Curr Opin Chem Biol 3:226–235

    Article  CAS  PubMed  Google Scholar 

  • Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1662

    Article  CAS  PubMed  Google Scholar 

  • Heitzer T, Brockhoff C, Mayer B, Warnholtz A, Mollnau H, Henne S, Meinertz T, Munzel T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res 86:E36–E41

    CAS  PubMed  Google Scholar 

  • Hickey MJ, Granger DN, Kubes P (2001) Inducible nitric oxide synthase (iNOS) and regulation of leucocyte/endothelial cell interactions: studies in iNOS-deficient mice. Acta Physiol Scand 173:119–126

    Article  CAS  PubMed  Google Scholar 

  • Hingorani AD (2003) Endothelial nitric oxide synthase polymorphisms and hypertension. Curr Hypertens Rep 5:19–25

    PubMed  Google Scholar 

  • Ho YS, Liou HB, Lin JK, Jeng JH, Pan MH, Lin YP, Guo HR, Ho SY, Lee CC, Wang YJ (2002) Lipid peroxidation and cell death mechanisms in pulmonary epithelial cells induced by peroxynitrite and nitric oxide. Arch Toxicol 76:484–493

    Google Scholar 

  • Horowitz A, Menice CB, Laporte R, Morgan KG (1996) Mechanisms of smooth muscle contraction. Physiol Rev 76:967–1003

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437

    CAS  PubMed  Google Scholar 

  • Jun T, Ke-yan F, Catalano M (1996) Increased superoxide anion production in humans: a possible mechanism for the pathogenesis of hypertension. J Hum Hypertens 10:305–309

    CAS  PubMed  Google Scholar 

  • Just A (1997) Nitric oxide and renal autoregulation. Kidney Blood Press Res 20:201–204

    CAS  PubMed  Google Scholar 

  • Kamada Y, Nagaretani H, Tamura S, Ohama T, Maruyama T, Hiraoka H, Yamashita S, Yamada A, Kiso S, Inui Y, Ito N, Kayanoki Y, Kawata S, Matsuzawa Y (2001) Vascular endothelial dysfunction resulting from l-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest 108:717–724

    Article  CAS  PubMed  Google Scholar 

  • Kawano H, Motoyama T, Hirai N, Kugiyama K, Yasue H, Ogawa H (2002) Endothelial dysfunction in hypercholesterolemia is improved by l-arginine administration: possible role of oxidative stress. Atherosclerosis 161:375–380

    Article  CAS  PubMed  Google Scholar 

  • Kenet G, Freedman J, Shenkman B, Regina E, Brok-Simoni F, Holzman F, Vavva F, Brand N, Michelson A, Trolliet M, Loscalzo J, Inbal A (1999) Plasma glutathione peroxidase deficiency and platelet insensitivity to nitric oxide in children with familial stroke. Arterioscler Thromb Vasc Biol 19:2017–2023

    CAS  PubMed  Google Scholar 

  • Kerr S, Brosnan MJ, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33:1353–1358

    CAS  PubMed  Google Scholar 

  • Kita T, Kume N, Ishii K, Horiuchi H, Arai H, Yokode M (1999) Oxidized LDL and expression of monocyte adhesion molecules. Diabetes Res Clin Pract 45:123–126

    Article  CAS  PubMed  Google Scholar 

  • Kroll MH, Schafer AI (1989) Biochemical mechanisms of platelet activation. Blood 74:1181–1195

    CAS  PubMed  Google Scholar 

  • Kurose I, Wolf R, Grisham MB, Aw TY, Specian RD, Granger DN (1995) Microvascular responses to inhibition of nitric oxide production. Role of active oxidants. Circ Res 76:30–39

    CAS  PubMed  Google Scholar 

  • Lauer T, Preik M, Rassaf T, Strauer BE, Deussen A, Feelisch M, Kelm M (2001) Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc Natl Acad Sci USA 98:12814–12819

    Article  CAS  PubMed  Google Scholar 

  • Lekakis JP, Papathanassiou S, Papaioannou TG, Papamichael CM, Zakopoulos N, Kotsis V, Dagre AG, Stamatelopoulos K, Protogerou A, Stamatelopoulos SF (2002) Oral l-arginine improves endothelial dysfunction in patients with essential hypertension. Int J Cardiol 86:317–323

    Article  PubMed  Google Scholar 

  • Lelchuk R, Radomski MW, Martin JF, Moncada S (1992) Constitutive and inducible nitric oxide synthases in human megakaryoblastic cells. J Pharmacol Exp Ther 262:1220–1224

    CAS  PubMed  Google Scholar 

  • Lentz SR, Rodionov RN, Dayal S (2003) Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atheroscler Suppl 4:61–65

    Article  CAS  PubMed  Google Scholar 

  • Levine GN, Frei B, Koulouris SN, Gerhard MD, Keaney JF Jr, Vita JA (1996) Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 93:1107–1113

    CAS  PubMed  Google Scholar 

  • Linscheid P, Schaffner A, Schoedon G (1998) Modulation of inducible nitric oxide synthase mRNA stability by tetrahydrobiopterin in vascular smooth muscle cells. Biochem Biophys Res Commun 243:137–141

    Google Scholar 

  • Loscalzo J (2000a) The biological chemistry of nitric oxide. In: Loscalzo J, Vita JA (eds) Nitric oxide and the cardiovascular system. Humana, Totowa, NJ, pp 3–10

  • Loscalzo J (2000b) What we know and don’t know about l-arginine and NO. Circulation 101:2126–2129

    CAS  PubMed  Google Scholar 

  • Loscalzo J (2001a) An experiment of nature: genetic l-arginine deficiency and NO insufficiency. J Clin Invest 108:663–664

    Article  CAS  PubMed  Google Scholar 

  • Loscalzo J (2001b) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88:756–762

    CAS  PubMed  Google Scholar 

  • Loscalzo J, Welch G (1995) Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis 38:87–104

    CAS  PubMed  Google Scholar 

  • Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315:1046–1051

    CAS  PubMed  Google Scholar 

  • Maddipati KR, Marnett LJ (1987) Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. J Biol Chem 262:17398–17403

    CAS  PubMed  Google Scholar 

  • Maier W, Cosentino F, Lutolf RB, Fleisch M, Seiler C, Hess OM, Meier B, Luscher TF (2000) Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. J Cardiovasc Pharmacol 35:173–178

    Article  CAS  PubMed  Google Scholar 

  • Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Alyonycheva TN, Safier LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley KA, Gayle RB, Maliszewski CR (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 99:1351–1360

    CAS  PubMed  Google Scholar 

  • Marcus AJ, Broekman MJ, Drosopoulos JH, Pinsky DJ, Islam N, Maliszewsk CR (2001) Inhibition of platelet recruitment by endothelial cell CD39/ecto-ADPase: significance for occlusive vascular diseases. Ital Heart J 2:824–830

    CAS  PubMed  Google Scholar 

  • Marley R, Patel RP, Orie N, Ceaser E, Darley-Usmar V, Moore K (2001) Formation of nanomolar concentrations of S-nitroso-albumin in human plasma by nitric oxide. Free Radic Biol Med 31:688–696

    Article  CAS  PubMed  Google Scholar 

  • Maxwell AJ, Cooke JP (2000) l-Arginine: its role in cardiovascular therapy. In: Loscalzo J, Vita JA (eds) Nitric oxide and the cardiovascular system. Humana, Totowa, NJ, pp 547–585

  • Mehta JL, Chen LY, Kone BC, Mehta P, Turner P (1995) Identification of constitutive and inducible forms of nitric oxide synthase in human platelets. J Lab Clin Med 125:370–377

    CAS  PubMed  Google Scholar 

  • Mendelsohn ME, O’Neill S, George D, Loscalzo J (1990) Inhibition of fibrinogen binding to human platelets by S-nitroso-N-acetylcysteine. J Biol Chem 265:19028–19034

    CAS  PubMed  Google Scholar 

  • Michel T, Xie Q-W, Nathan C (1995) Molecular biological analysis of nitric oxide synthases. In: Feelisch M, Stamler JS (eds) Methods in nitric oxide research. Wiley, Chichester, UK, pp 161–175

  • Michelson AD, Benoit SE, Furman MI, Breckwoldt WL, Rohrer MJ, Barnard MR, Loscalzo J (1996) Effects of nitric oxide/EDRF on platelet surface glycoproteins. Am J Physiol 270:H1640–H1648

    CAS  PubMed  Google Scholar 

  • Moro MA, Russel RJ, Cellek S, Lizasoain I, Su Y, Darley-Usmar VM, Radomski MW, Moncada S (1996) cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci USA 93:1480–1485

    Article  CAS  PubMed  Google Scholar 

  • Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H (1978) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9:145–158

    CAS  PubMed  Google Scholar 

  • Murohara T, Parkinson SJ, Waldman SA, Lefer AM (1995) Inhibition of nitric oxide biosynthesis promotes P-selectin expression in platelets. Role of protein kinase C. Arterioscler Thromb Vasc Biol 15:2068–2075

    CAS  PubMed  Google Scholar 

  • Muruganandam A, Mutus B (1994) Isolation of nitric oxide synthase from human platelets. Biochim Biophys Acta 1200:1–6

    Article  CAS  PubMed  Google Scholar 

  • Nakaki T, Nakayama M, Kato R (1990) Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells. Eur J Pharmacol 189:347–353

    Article  CAS  PubMed  Google Scholar 

  • Nakashima S, Tohmatsu T, Hattori H, Okano Y, Nozawa Y (1986) Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem Biophys Res Commun 135:1099–1104

    CAS  PubMed  Google Scholar 

  • Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, Kugiyama K, Ogawa H, Motoyama T, Saito Y, Ogawa Y, Miyamoto Y, Nakao K (1999) T(-786)→C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 99:2864–2870

    CAS  PubMed  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    CAS  PubMed  Google Scholar 

  • Nathan CF, Hibbs JB Jr (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728

    CAS  PubMed  Google Scholar 

  • Niebauer J, Dulak J, Chan JR, Tsao PS, Cooke JP (1999) Gene transfer of nitric oxide synthase: effects on endothelial biology. J Am Coll Cardiol 34:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Nishimura RA, Lerman A, Chesebro JH, Ilstrup DM, Hodge DO, Higano ST, Holmes DR Jr, Tajik AJ (1995) Epicardial vasomotor responses to acetylcholine are not predicted by coronary atherosclerosis as assessed by intracoronary ultrasound. J Am Coll Cardiol 26:41–49

    Article  CAS  PubMed  Google Scholar 

  • Nong Z, Hoylaerts M, Van Pelt N, Collen D, Janssens S (1997) Nitric oxide inhalation inhibits platelet aggregation and platelet-mediated pulmonary thrombosis in rats. Circ Res 81:865–869

    CAS  PubMed  Google Scholar 

  • Oemar BS, Tschudi MR, Godoy N, Brovkovich V, Malinski T, Luscher TF (1998) Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 97:2494–2498

    CAS  PubMed  Google Scholar 

  • Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551

    CAS  PubMed  Google Scholar 

  • Ohara Y, Peterson TE, Sayegh HS, Subramanian RR, Wilcox JN, Harrison DG (1995) Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation 92:898–903

    CAS  PubMed  Google Scholar 

  • Padmaja S, Squadrito GL, Pryor WA (1998) Inactivation of glutathione peroxidase by peroxynitrite. Arch Biochem Biophys 349:1–6

    Article  CAS  PubMed  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  • Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    Article  CAS  PubMed  Google Scholar 

  • Pernow J, Bohm F, Beltran E, Gonon A (2003) l-arginine protects from ischemia-reperfusion-induced endothelial dysfunction in humans in vivo. J Appl Physiol 95:2218–2222

    CAS  PubMed  Google Scholar 

  • Piatti P, Fragasso G, Monti LD, Setola E, Lucotti P, Fermo I, Paroni R, Galluccio E, Pozza G, Chierchia S, Margonato A (2003) Acute intravenous l-arginine infusion decreases endothelin-1 levels and improves endothelial function in patients with angina pectoris and normal coronary arteriograms: correlation with asymmetric dimethylarginine levels. Circulation 107:429–436

    Article  CAS  PubMed  Google Scholar 

  • Quyyumi AA, Dakak N, Mulcahy D, Andrews NP, Husain S, Panza JA, Cannon RO III (1997) Nitric oxide activity in the atherosclerotic human coronary circulation. J Am Coll Cardiol 29:308–317

    CAS  PubMed  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    CAS  PubMed  Google Scholar 

  • Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    Article  CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1990) An l-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–5197

    CAS  PubMed  Google Scholar 

  • Rassaf T, Bryan NS, Kelm M, Feelisch M (2002a) Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic Biol Med 33:1590–1596

    Article  CAS  PubMed  Google Scholar 

  • Rassaf T, Kleinbongard P, Preik M, Dejam A, Gharini P, Lauer T, Erckenbrecht J, Duschin A, Schulz R, Heusch G, Feelisch M, Kelm M (2002b) Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: experimental and clinical study on the fate of NO in human blood. Circ Res 91:470–477

    Article  CAS  PubMed  Google Scholar 

  • Rodenas J, Carbonell T, Mitjavila MT (2000) Different roles for nitrogen monoxide and peroxynitrite in lipid peroxidation induced by activated neutrophils. Free Radic Biol Med 28:374–380

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez J, Maloney RE, Rassaf T, Bryan NS, Feelisch M (2003) Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci USA 100:336–341

    Article  CAS  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  • Rossi GP, Taddei S, Virdis A, Cavallin M, Ghiadoni L, Favilla S, Versari D, Sudano I, Pessina AC, Salvetti A (2003a) The T-786C and Glu298Asp polymorphisms of the endothelial nitric oxide gene affect the forearm blood flow responses of Caucasian hypertensive patients. J Am Coll Cardiol 41:938–945

    Article  CAS  PubMed  Google Scholar 

  • Rossi GP, Cesari M, Zanchetta M, Colonna S, Maiolino G, Pedon L, Cavallin M, Maiolino P, Pessina AC (2003b) The T-786C endothelial nitric oxide synthase genotype is a novel risk factor for coronary artery disease in Caucasian patients of the GENICA study. J Am Coll Cardiol 41:930–937

    Article  CAS  PubMed  Google Scholar 

  • Rubbo H (1998) Nitric oxide and peroxynitrite in lipid peroxidation. Medicina (B Aires) 58:361–366

  • Sase K, Michel T (1995) Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci 57:2049–2055

    Google Scholar 

  • Shimasaki Y, Yasue H, Yoshimura M, Nakayama M, Kugiyama K, Ogawa H, Harada E, Masuda T, Koyama W, Saito Y, Miyamoto Y, Ogawa Y, Nakao K (1998) Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with myocardial infarction. J Am Coll Cardiol 31:1506–1510

    Article  CAS  PubMed  Google Scholar 

  • Shultz PJ, Raij L (1992) Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest 90:1718–1725

    CAS  PubMed  Google Scholar 

  • Sies H, Sharov VS, Klotz LO, Briviba K (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272:27812–27817

    Article  CAS  PubMed  Google Scholar 

  • Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE (1994) Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Invest 93:50–55

    Google Scholar 

  • Sporer B, Martens KH, Koedel U, Haberl RL (1997) l-arginine-induced regional cerebral blood flow increase is abolished after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 17:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Stagliano NE, Zhao W, Prado R, Dewanjee MK, Ginsberg MD, Dietrich WD (1997) The effect of nitric oxide synthase inhibition on acute platelet accumulation and hemodynamic depression in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab 17:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J (1992a) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89:7674–7677

    CAS  PubMed  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992b) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    CAS  PubMed  Google Scholar 

  • Stokes KY, Cooper D, Tailor A, Granger DN (2002) Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radic Biol Med 33:1026–1036

    Article  CAS  PubMed  Google Scholar 

  • Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Luscher T, Rabelink T (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99:41–46

    CAS  PubMed  Google Scholar 

  • Stuhlinger MC, Oka RK, Graf EE, Schmolzer I, Upson BM, Kapoor O, Szuba A, Malinow MR, Wascher TC, Pachinger O, Cooke JP (2003) Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation 108:933–938

    Article  PubMed  Google Scholar 

  • Suzuki T, Okumura K, Sone T, Kosokabe T, Tsuboi H, Kondo J, Mukawa H, Kamiya H, Tomida T, Imai H, Matsui H, Hayakawa T (2002) The Glu298Asp polymorphism in endothelial nitric oxide synthase gene is associated with coronary in-stent restenosis. Int J Cardiol 86:71–76

    Article  PubMed  Google Scholar 

  • Sydow K, Schwedhelm E, Arakawa N, Bode-Boger SM, Tsikas D, Hornig B, Frolich JC, Boger RH (2003) ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of l-arginine and B vitamins. Cardiovasc Res 57:244–252

    Article  CAS  PubMed  Google Scholar 

  • Szabo C, Ohshima H (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1:373–385

    Article  CAS  PubMed  Google Scholar 

  • Tailor A, Granger DN (2000) Role of adhesion molecules in vascular regulation and damage. Curr Hypertens Rep 2:78–83

    CAS  PubMed  Google Scholar 

  • Tanus-Santos JE, Desai M, Deak LR, Pezzullo JC, Abernethy DR, Flockhart DA, Freedman JE (2002) Effects of endothelial nitric oxide synthase gene polymorphisms on platelet function, nitric oxide release, and interactions with estradiol. Pharmacogenetics 12:407–413

    Article  CAS  PubMed  Google Scholar 

  • Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97:22–28

    CAS  PubMed  Google Scholar 

  • Ting HH, Timimi FK, Haley EA, Roddy MA, Ganz P, Creager MA (1997) Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 95:2617–2622

    CAS  PubMed  Google Scholar 

  • Tousoulis D, Davies G, Tentolouris C, Crake T, Toutouzas P (1997) Coronary stenosis dilatation induced by l-arginine. Lancet 349:1812–1813

    CAS  PubMed  Google Scholar 

  • Trepakova ES, Cohen RA, Bolotina VM (1999) Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase-dependent refilling of Ca2+ stores. Circ Res 84:201–209

    CAS  PubMed  Google Scholar 

  • Tsao PS, McEvoy LM, Drexler H, Butcher EC, Cooke JP (1994) Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by l-arginine. Circulation 89:2176–2182

    Google Scholar 

  • Tsao PS, Lewis NP, Alpert S, Cooke JP (1995) Exposure to shear stress alters endothelial adhesiveness. Role of nitric oxide. Circulation 92:3513–3519

    CAS  PubMed  Google Scholar 

  • Tsukada T, Yokoyama K, Arai T, Takemoto F, Hara S, Yamada A, Kawaguchi Y, Hosoya T, Igari J (1998) Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans. Biochem Biophys Res Commun 245:190–193

    Google Scholar 

  • Vadseth C, Souza JM, Thomson L, Seagraves A, Nagaswami C, Scheiner T, Torbet J, Vilaire G, Bennett JS, Murciano JC, Muzykantov V, Penn MS, Hazen SL, Weisel JW, Ischiropoulos H (2004) Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem 279:8820–8826

    Article  CAS  PubMed  Google Scholar 

  • Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmacol 20(suppl 12):S60–S62

  • Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95:9220–9225

    Article  CAS  PubMed  Google Scholar 

  • Veldman BA, Spiering W, Doevendans PA, Vervoort G, Kroon AA, de Leeuw PW, Smits P (2002) The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. J Hypertens 20:2023–2027

    Article  CAS  PubMed  Google Scholar 

  • Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ (1998) 5-Methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation 97:237–241

    CAS  PubMed  Google Scholar 

  • Virág L, Szabo E, Gergely P, Szabo C (2003) Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 140–141:113–124

  • Voetsch B, Loscalzo J (2004) Genetic determinants of arterial thrombosis. Arterioscler Thromb Vasc Biol 24:216–229

    Article  CAS  PubMed  Google Scholar 

  • Voetsch B, Bierl C, Handy DE, Loscalzo J (2003) Adverse functional consequences of promoter polymorphisms in the plasma glutathione peroxidase gene. Circulation 108: IV–230

    Google Scholar 

  • Walford G, Loscalzo J (2003) Nitric oxide in vascular biology. J Thromb Haemost 1:2112–2118

    Article  CAS  PubMed  Google Scholar 

  • Wallerath T, Gath I, Aulitzky WE, Pollock JS, Kleinert H, Forstermann U (1997) Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets. Thromb Haemost 77:163–167

    CAS  PubMed  Google Scholar 

  • Wang BY, Ho HK, Lin PS, Schwarzacher SP, Pollman MJ, Gibbons GH, Tsao PS, Cooke JP (1999) Regression of atherosclerosis: role of nitric oxide and apoptosis. Circulation 99:1236–1241

    CAS  PubMed  Google Scholar 

  • Ware JA, Heistad DD (1993) Seminars in medicine of the Beth Israel Hospital, Boston. Platelet-endothelium interactions. N Engl J Med 328:628–635

    Article  CAS  PubMed  Google Scholar 

  • Weber C, Erl W, Pietsch A, Strobel M, Ziegler-Heitbrock HW, Weber PC (1994) Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-kappa B mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arterioscler Thromb 14:1665–1673

    Google Scholar 

  • White RP, Vallance P, Markus HS (2000) Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci (Lond) 99:555–560

    Google Scholar 

  • Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273:25804–25808

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Huang Z, Dalkara T, Endres M, Laufs U, Waeber C, Huang PL, Liao JK, Moskowitz MA (2000) Endothelial nitric oxide synthase-dependent cerebral blood flow augmentation by l-arginine after chronic statin treatment. J Cereb Blood Flow Metab 20:709–717

    CAS  PubMed  Google Scholar 

  • Yao SK, Ober JC, Krishnaswami A, Ferguson JJ, Anderson HV, Golino P, Buja LM, Willerson JT (1992) Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium-injured arteries. Circulation 86:1302–1309

    CAS  PubMed  Google Scholar 

  • Yoshioka M, Matsushita T, Chuman Y (1984) Inverse association of serum ascorbic acid level and blood pressure or rate of hypertension in male adults aged 30–39 years. Int J Vitam Nutr Res 54:343–347

    CAS  PubMed  Google Scholar 

  • Zhou Q, Hellermann GR, Solomonson LP (1995) Nitric oxide release from resting human platelets. Thromb Res 77:87–96

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Loscalzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voetsch, B., Jin, R.C. & Loscalzo, J. Nitric oxide insufficiency and atherothrombosis. Histochem Cell Biol 122, 353–367 (2004). https://doi.org/10.1007/s00418-004-0675-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0675-z

Keywords

Navigation