Skip to main content

Vascular Endothelial Dysfunction and Atherosclerosis: Role of Nitric Oxide System

  • Chapter
Pathophysiology and Pharmacotherapy of Cardiovascular Disease

Abstract

Nitric oxide (NO) is a vasoprotective molecule that plays a critical role in modulating endothelial functions. A compromised NO bioavailability due to defective NO generation by endothelial nitric oxide synthase (eNOS) has been suggested as one of the mechanisms leading to the pathogenesis of vascular abnormalities such as atherosclerosis. NO synthesis requires L-arginine as a substrate for eNOS as well as several cofactors for its catalytic activity. Vascular endothelial dysfunction and atherosclerosis are associated with deficiencies in the levels of arginine and eNOS cofactor tetrahydrobiopterin (BH4). Reactive oxygen species (ROS), aberrant lipid metabolism and elevated protein kinase C have also been reported to alter NO biosynthesis by modulating eNOS activity. In vitro studies as well as use of animal models of vascular diseases have provided some evidence regarding the molecular mechanisms of the reduced NO bioavailability associated with atherosclerosis. This chapter briefly summarises key studies highlighting the role of interplay between pro-atherogenic factors such as ROS, growth factors and vasoactive peptides and NO system in vascular endothelial dysfunction and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(Pt 3):593–615.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Buchwalow IB, Podzuweit T, Bocker W, Samoilova VE, Thomas S, Wellner M, et al. Vascular smooth muscle and nitric oxide synthase. FASEB J. 2002;16(6):500–8.

    CAS  PubMed  Google Scholar 

  3. Park CS, Park R, Krishna G. Constitutive expression and structural diversity of inducible isoform of nitric oxide synthase in human tissues. Life Sci. 1996;59(3):219–25.

    CAS  PubMed  Google Scholar 

  4. Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol. 2006;46:235–76.

    CAS  PubMed  Google Scholar 

  5. Forstermann U, Boissel JP, Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J. 1998;12(10):773–90.

    CAS  PubMed  Google Scholar 

  6. Nakata S, Tsutsui M, Shimokawa H, Tamura M, Tasaki H, Morishita T, et al. Vascular neuronal NO synthase is selectively upregulated by platelet-derived growth factor: involvement of the MEK/ERK pathway. Arterioscler Thromb Vasc Biol. 2005;25(12):2502–8.

    CAS  PubMed  Google Scholar 

  7. Nakata S, Tsutsui M, Shimokawa H, Yamashita T, Tanimoto A, Tasaki H, et al. Statin treatment upregulates vascular neuronal nitric oxide synthase through Akt/NF-kappaB pathway. Arterioscler Thromb Vasc Biol. 2007;27(1):92–8.

    CAS  PubMed  Google Scholar 

  8. Tsutsui M. Neuronal nitric oxide synthase as a novel anti-atherogenic factor. J Atheroscler Thromb. 2004;11(2):41–8.

    CAS  PubMed  Google Scholar 

  9. Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric-oxide. Annu Rev Pharmacol Toxicol. 1990;30:535–60.

    CAS  PubMed  Google Scholar 

  10. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S. Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem. 2004;279(35):36167–70.

    CAS  PubMed  Google Scholar 

  11. Ignarro LJ, Degnan JN, Baricos WH, Kadowitz PJ, Wolin MS. Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim Biophys Acta. 1982;718(1):49–59.

    CAS  PubMed  Google Scholar 

  12. Traylor TG, Sharma VS. Why NO? Biochemistry. 1992;31(11):2847–9.

    CAS  PubMed  Google Scholar 

  13. Krumenacker JS, Hanafy KA, Murad F. Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res Bull. 2004;62(6):505–15.

    CAS  PubMed  Google Scholar 

  14. Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F. Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol. 1999;135:105–49.

    CAS  PubMed  Google Scholar 

  15. Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F. Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ Res. 2003;93(10):907–16.

    CAS  PubMed  Google Scholar 

  16. Lincoln TM, Wu X, Sellak H, Dey N, Choi CS. Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Front Biosci. 2006;11:356–67.

    CAS  PubMed  Google Scholar 

  17. Burley DS, Ferdinandy P, Baxter GF. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol. 2007;152(6):855–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Wang S, Li Y. Expression of constitutively active cGMP-dependent protein kinase inhibits glucose-induced vascular smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol. 2009;297(6):H2075–83.

    CAS  PubMed  Google Scholar 

  19. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52(3):375–414.

    CAS  PubMed  Google Scholar 

  20. Layland J, Li JM, Shah AM. Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol. 2002;540(Pt 2):457–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Suhasini M, Li H, Lohmann SM, Boss GR, Pilz RB. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway. Mol Cell Biol. 1998;18(12):6983–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Jahn H, Nastainczyk W, Rohrkasten A, Schneider T, Hofmann F. Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. Eur J Biochem. 1988;178(2):535–42.

    CAS  PubMed  Google Scholar 

  23. Fukao M, Mason HS, Britton FC, Kenyon JL, Horowitz B, Keef KD. Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. J Biol Chem. 1999;274(16):10927–35.

    CAS  PubMed  Google Scholar 

  24. Lincoln TM, Dey N, Sellak H. Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol. 2001;91(3):1421–30.

    CAS  PubMed  Google Scholar 

  25. Murad F. The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication. Recent Prog Horm Res. 1994;49:239–48.

    CAS  PubMed  Google Scholar 

  26. Ortega MA, de Artiñano AA. Nitric oxide reactivity and mechanisms involved in its biological effects. Pharmacol Res. 2000;42(5):421–7.

    Google Scholar 

  27. Cornwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 1994;267(5 Pt 1):C1405–13.

    CAS  PubMed  Google Scholar 

  28. Bian K, Ke Y, Kamisaki Y, Murad F. Proteomic modification by nitric oxide. J Pharmacol Sci. 2006;101(4):271–9.

    CAS  PubMed  Google Scholar 

  29. Arejian M, Li Y, Anand-Srivastava MB. Nitric oxide attenuates the expression of natriuretic peptide receptor C and associated adenylyl cyclase signaling in aortic vascular smooth muscle cells: role of MAPK. Am J Physiol Heart Circ Physiol. 2009;296(6):H1859–67.

    CAS  PubMed  Google Scholar 

  30. Bassil M, Anand-Srivastava MB. Nitric oxide modulates Gi-protein expression and adenylyl cyclase signaling in vascular smooth muscle cells. Free Radic Biol Med. 2006;41(7):1162–73.

    CAS  PubMed  Google Scholar 

  31. Marletta MA, Spiering MM. Trace elements and nitric oxide function. J Nutr. 2003;133(5 Suppl 1):1431S–3.

    CAS  PubMed  Google Scholar 

  32. Fujii H, Ichimori K, Hoshiai K, Nakazawa H. Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem. 1997;272(52):32773–8.

    CAS  PubMed  Google Scholar 

  33. Lei J, Vodovotz Y, Tzeng E, Billiar TR. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide. 2013;35:175–85.

    CAS  PubMed  Google Scholar 

  34. Lloyd-Jones DM, Bloch KD. The vascular biology of nitric oxide and its role in atherogenesis. Annu Rev Med. 1996;47:365–75.

    CAS  PubMed  Google Scholar 

  35. Wever R, Stroes E, Rabelink TJ. Nitric oxide and hypercholesterolemia: a matter of oxidation and reduction? Atherosclerosis. 1998;137(Suppl):S51–60.

    CAS  PubMed  Google Scholar 

  36. Yu SM, Hung LM, Lin CC. cGMP-elevating agents suppress proliferation of vascular smooth muscle cells by inhibiting the activation of epidermal growth factor signaling pathway. Circulation. 1997;95(5):1269–77.

    CAS  PubMed  Google Scholar 

  37. D’Souza FM, Sparks RL, Chen H, Kadowitz PJ, Jeter Jr JR. Mechanism of eNOS gene transfer inhibition of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2003;284(1):C191–9.

    PubMed  Google Scholar 

  38. Tsihlis ND, Oustwani CS, Vavra AK, Jiang Q, Keefer LK, Kibbe MR. Nitric oxide inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by increasing the ubiquitination and degradation of UbcH10. Cell Biochem Biophys. 2011;60(1–2):89–97.

    CAS  PubMed  Google Scholar 

  39. Alfke H, Kleb B, Klose KJ. Nitric oxide inhibits the basic fibroblast growth factor-stimulated migration of bovine vascular smooth muscle cells in vitro. Vasa. 2000;29(2):99–102.

    CAS  PubMed  Google Scholar 

  40. Failli P, DeFRANCO RM, Caligiuri A, Gentilini A, Romanelli RG, Marra F, et al. Nitrovasodilators inhibit platelet-derived growth factor-induced proliferation and migration of activated human hepatic stellate cells. Gastroenterology. 2000;119(2):479–92.

    CAS  PubMed  Google Scholar 

  41. Taimor G, Rakow A, Piper HM. Transcription activator protein 1 (AP-1) mediates NO-induced apoptosis of adult cardiomyocytes. FASEB J. 2001;15(13):2518–20.

    CAS  PubMed  Google Scholar 

  42. Kapakos G, Bouallegue A, Daou GB, Srivastava AK. Modulatory role of nitric oxide/cGMP system in endothelin-1-induced signaling responses in vascular smooth muscle cells. Curr Cardiol Rev. 2010;6(4):247–54.

    PubMed Central  PubMed  Google Scholar 

  43. Wang L, Proud CG. Ras/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes. Circ Res. 2002;91(9):821–9.

    CAS  PubMed  Google Scholar 

  44. Sugden PH, Fuller SJ, Mynett JR, Hatchett RJ, Bogoyevitch MA, Sugden MC. Stimulation of adult rat ventricular myocyte protein synthesis and phosphoinositide hydrolysis by the endothelins. Biochim Biophys Acta. 1993;1175(3):327–32.

    CAS  PubMed  Google Scholar 

  45. Bouallegue A, Daou GB, Srivastava AK. Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway. Am J Physiol Heart Circ Physiol. 2007;293(4):H2072–9.

    CAS  PubMed  Google Scholar 

  46. Zhan CD, Pan JY. Nitric oxide inhibits the expression of proto-oncogene c-fos induced by angiotensin II and endothelin-1 in cardiomyocytes. Sheng Li Xue Bao. 2000;52(6):450–4.

    CAS  PubMed  Google Scholar 

  47. Wang D, Yu X, Brecher P. Nitric oxide and N-acetylcysteine inhibit the activation of mitogen-activated protein kinases by angiotensin II in rat cardiac fibroblasts. J Biol Chem. 1998;273(49):33027–34.

    CAS  PubMed  Google Scholar 

  48. Wang D, Yu X, Brecher P. Nitric oxide inhibits angiotensin II-induced activation of the calcium-sensitive tyrosine kinase proline-rich tyrosine kinase 2 without affecting epidermal growth factor receptor transactivation. J Biol Chem. 1999;274(34):24342–8.

    CAS  PubMed  Google Scholar 

  49. Rodriguez A, Gomez-Ambrosi J, Catalan V, Fortuno A, Fruhbeck G. Leptin inhibits the proliferation of vascular smooth muscle cells induced by angiotensin II through nitric oxide-dependent mechanisms. Mediators Inflamm. 2010;2010:105489.

    PubMed Central  PubMed  Google Scholar 

  50. Dhawan V, Handu SS, Nain CK, Ganguly NK. Chronic L-arginine supplementation improves endothelial cell vasoactive functions in hypercholesterolemic and atherosclerotic monkeys. Mol Cell Biochem. 2005;269(1–2):1–11.

    CAS  PubMed  Google Scholar 

  51. Chandra S, Romero MJ, Shatanawi A, Alkilany AM, Caldwell RB, Caldwell RW. Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway. Br J Pharmacol. 2012;165(2):506–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Pandey D, Bhunia A, Oh YJ, Chang F, Bergman Y, Kim JH, et al. OxLDL triggers retrograde translocation of arginase2 in aortic endothelial cells via ROCK and mitochondrial processing peptidase. Circ Res. 2014;115(4):450–9.

    CAS  PubMed  Google Scholar 

  53. Ryoo S, Bhunia A, Chang F, Shoukas A, Berkowitz DE, Romer LH. OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling. Atherosclerosis. 2011;214(2):279–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Thengchaisri N, Hein TW, Wang W, Xu X, Li Z, Fossum TW, et al. Upregulation of arginase by H2O2 impairs endothelium-dependent nitric oxide-mediated dilation of coronary arterioles. Arterioscler Thromb Vasc Biol. 2006;26(9):2035–42.

    CAS  PubMed  Google Scholar 

  55. Romero MJ, Platt DH, Tawfik HE, Labazi M, El-Remessy AB, Bartoli M, et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res. 2008;102(1):95–102.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Yao L, Chandra S, Toque HA, Bhatta A, Rojas M, Caldwell RB, et al. Prevention of diabetes-induced arginase activation and vascular dysfunction by Rho kinase (ROCK) knockout. Cardiovasc Res. 2013;97(3):509–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Sikka G, Pandey D, Bhuniya AK, Steppan J, Armstrong D, Santhanam L, et al. Contribution of arginase activation to vascular dysfunction in cigarette smoking. Atherosclerosis. 2013;231(1):91–4.

    CAS  PubMed  Google Scholar 

  58. Ryoo S, Berkowitz DE, Lim HK. Endothelial arginase II and atherosclerosis. Korean J Anesthesiol. 2011;61(1):3–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Toque HA, Nunes KP, Rojas M, Bhatta A, Yao L, Xu Z, et al. Arginase 1 mediates increased blood pressure and contributes to vascular endothelial dysfunction in deoxycorticosterone acetate-salt hypertension. Front Immunol. 2013;4:219.

    PubMed Central  PubMed  Google Scholar 

  60. Shin W, Berkowitz DE, Ryoo S. Increased arginase II activity contributes to endothelial dysfunction through endothelial nitric oxide synthase uncoupling in aged mice. Exp Mol Med. 2012;44:594–602.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Shemyakin A, Kovamees O, Rafnsson A, Bohm F, Svenarud P, Settergren M, et al. Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation. 2012;126(25):2943–50.

    CAS  PubMed  Google Scholar 

  62. El-Bassossy HM, El-Fawal R, Fahmy A. Arginase inhibition alleviates hypertension associated with diabetes: effect on endothelial dependent relaxation and NO production. Vascul Pharmacol. 2012;57(5–6):194–200.

    CAS  PubMed  Google Scholar 

  63. El-Bassossy HM, El-Fawal R, Fahmy A, Watson ML. Arginase inhibition alleviates hypertension in the metabolic syndrome. Br J Pharmacol. 2013;169(3):693–703.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Tain YL, Kao YH, Hsieh CS, Chen CC, Sheen JM, Lin IC, et al. Melatonin blocks oxidative stress-induced increased asymmetric dimethylarginine. Free Radic Biol Med. 2010;49(6):1088–98.

    CAS  PubMed  Google Scholar 

  65. Luo Z, Teerlink T, Griendling K, Aslam S, Welch WJ, Wilcox CS. Angiotensin II and NADPH oxidase increase ADMA in vascular smooth muscle cells. Hypertension. 2010;56(3):498–504.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation. 2002;106(8):987–92.

    CAS  PubMed  Google Scholar 

  67. Sydow K, Schwedhelm E, Arakawa N, Bode-Boger SM, Tsikas D, Hornig B, et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovasc Res. 2003;57(1):244–52.

    CAS  PubMed  Google Scholar 

  68. Tang WJ, Hu CP, Chen MF, Deng PY, Li YJ. Epigallocatechin gallate preserves endothelial function by reducing the endogenous nitric oxide synthase inhibitor level. Can J Physiol Pharmacol. 2006;84(2):163–71.

    CAS  PubMed  Google Scholar 

  69. Jiang JL, Li Ns NS, Li YJ, Deng HW. Probucol preserves endothelial function by reduction of the endogenous nitric oxide synthase inhibitor level. Br J Pharmacol. 2002;135(5):1175–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Fan NC, Tsai CM, Hsu CN, Huang LT, Tain YL. N-acetylcysteine prevents hypertension via regulation of the ADMA-DDAH pathway in young spontaneously hypertensive rats. Biomed Res Int. 2013;2013:696317.

    PubMed Central  PubMed  Google Scholar 

  71. Druhan LJ, Forbes SP, Pope AJ, Chen CA, Zweier JL, Cardounel AJ. Regulation of eNOS-derived superoxide by endogenous methylarginines. Biochemistry. 2008;47(27):7256–63.

    CAS  PubMed  Google Scholar 

  72. Antoniades C, Shirodaria C, Leeson P, Antonopoulos A, Warrick N, Van-Assche T, et al. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J. 2009;30(9):1142–50.

    CAS  PubMed  Google Scholar 

  73. Higashi Y, Sasaki S, Nakagawa K, Kimura M, Noma K, Hara K, et al. Tetrahydrobiopterin improves aging-related impairment of endothelium-dependent vasodilation through increase in nitric oxide production. Atherosclerosis. 2006;186(2):390–5.

    CAS  PubMed  Google Scholar 

  74. Alp NJ, Mussa S, Khoo J, Cai S, Yuzik T, Jefferson A, et al. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest. 2003;112(5):725–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Alp NJ, McAteer MA, Khoo J, Choudhury RP, Channon KM. Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol. 2004;24(3):445–50.

    CAS  PubMed  Google Scholar 

  76. Ihlemann N, Rask-Madsen C, Perner A, Dominguez H, Hermann T, Kober L, et al. Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects. Am J Physiol Heart Circ Physiol. 2003;285(2):H875–82.

    CAS  PubMed  Google Scholar 

  77. Heitzer T, Krohn K, Albers S, Meinertz T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia. 2000;43(11):1435–8.

    CAS  PubMed  Google Scholar 

  78. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A. 1998;95(16):9220–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Vasquez-Vivar J, Martasek P, Whitsett J, Joseph J, Kalyanaraman B. The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study. Biochem J. 2002;362(Pt 3):733–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Noguchi K, Hamadate N, Matsuzaki T, Sakanashi M, Nakasone J, Uchida T, et al. Increasing dihydrobiopterin causes dysfunction of endothelial nitric oxide synthase in rats in vivo. Am J Physiol Heart Circ Physiol. 2011;301(3):H721–9.

    CAS  PubMed  Google Scholar 

  81. Chen CA, De PF, Basye A, Hemann C, Zweier JL. Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification. Biochemistry. 2013;52(38):6712–23.

    CAS  PubMed  Google Scholar 

  82. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature. 2010;468(7327):1115–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Crabtree MJ, Brixey R, Batchelor H, Hale AB, Channon KM. Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling. J Biol Chem. 2013;288(1):561–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Peluffo G, Calcerrada P, Piacenza L, Pizzano N, Radi R. Superoxide-mediated inactivation of nitric oxide and peroxynitrite formation by tobacco smoke in vascular endothelium: studies in cultured cells and smokers. Am J Physiol Heart Circ Physiol. 2009;296(6):H1781–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101(6):676–81.

    CAS  PubMed  Google Scholar 

  86. Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest. 1996;98(4):894–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94(3):1172–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94(6):2511–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Ritchie SA, Kohlhaas CF, Boyd AR, Yalla KC, Walsh K, Connell JM, et al. Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis. Biochem J. 2010;426(1):85–90.

    CAS  PubMed  Google Scholar 

  90. Lee JH, Palaia T, Ragolia L. Impaired insulin-mediated vasorelaxation in diabetic Goto-Kakizaki rats is caused by impaired Akt phosphorylation. Am J Physiol Cell Physiol. 2009;296(2):C327–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation. 2002;106(4):466–72.

    CAS  PubMed  Google Scholar 

  92. Gonzalez M, Gallardo V, Rodriguez N, Salomon C, Westermeier F, Guzman-Gutierrez E, et al. Insulin-stimulated L-arginine transport requires SLC7A1 gene expression and is associated with human umbilical vein relaxation. J Cell Physiol. 2011;226(11):2916–24.

    CAS  PubMed  Google Scholar 

  93. Kohlhaas CF, Morrow VA, Jhakra N, Patil V, Connell JM, Petrie JR, et al. Insulin rapidly stimulates L-arginine transport in human aortic endothelial cells via Akt. Biochem Biophys Res Commun. 2011;412(4):747–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, et al. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr. 2005;135(4):714–21.

    CAS  PubMed  Google Scholar 

  95. Langouche L, Vanhorebeek I, Vlasselaers D, Vander PS, Wouters PJ, Skogstrand K, et al. Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest. 2005;115(8):2277–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Hayashi T, Matsui-Hirai H, Fukatsu A, Sumi D, Kano-Hayashi H, Rani PJ, et al. Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism. Atherosclerosis. 2006;187(2):316–24.

    CAS  PubMed  Google Scholar 

  97. Kuhlencordt PJ, Chen J, Han F, Astern J, Huang PL. Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation. 2001;103(25):3099–104.

    CAS  PubMed  Google Scholar 

  98. Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7(10):1138–43.

    CAS  PubMed  Google Scholar 

  99. Bardell AL, MacLeod KM. Evidence for inducible nitric-oxide synthase expression and activity in vascular smooth muscle of streptozotocin-diabetic rats. J Pharmacol Exp Ther. 2001;296(2):252–9.

    CAS  PubMed  Google Scholar 

  100. Fujimoto M, Shimizu N, Kunii K, Martyn JA, Ueki K, Kaneki M. A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes. 2005;54(5):1340–8.

    CAS  PubMed  Google Scholar 

  101. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.

    CAS  PubMed  Google Scholar 

  102. Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M, Sonoda N, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol. 2003;14(8 Suppl 3):S227–32.

    CAS  PubMed  Google Scholar 

  103. Srivastava AK. High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: a potential role in the pathogenesis of vascular dysfunction in diabetes (review). Int J Mol Med. 2002;9(1):85–9.

    CAS  PubMed  Google Scholar 

  104. Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuma K, Way KJ, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes. 2006;55(3):691–8.

    CAS  PubMed  Google Scholar 

  105. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68–75.

    CAS  PubMed  Google Scholar 

  106. Matsubara M, Hayashi N, Jing T, Titani K. Regulation of endothelial nitric oxide synthase by protein kinase C. J Biochem. 2003;133(6):773–81.

    CAS  PubMed  Google Scholar 

  107. Ching LC, Zhao JF, Su KH, Shyue SK, Hsu CP, Lu TM, et al. Activation of transient receptor potential vanilloid 1 decreases endothelial nitric oxide synthase phosphorylation at Thr497 by protein phosphatase 2B-dependent dephosphorylation of protein kinase C. Acta Physiol (Oxf). 2013;209(2):124–35.

    CAS  Google Scholar 

  108. Chen F, Kumar S, Yu Y, Aggarwal S, Gross C, Wang Y, et al. PKC-dependent phosphorylation of eNOS at T495 regulates eNOS coupling and endothelial barrier function in response to G+ -toxins. PLoS One. 2014;9(7):e99823.

    PubMed Central  PubMed  Google Scholar 

  109. Harja E, Chang JS, Lu Y, Leitges M, Zou YS, Schmidt AM, et al. Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis. FASEB J. 2009;23(4):1081–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Kong L, Shen X, Lin L, Leitges M, Rosario R, Zou YS, et al. PKCbeta promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arterioscler Thromb Vasc Biol. 2013;33(8):1779–87.

    CAS  PubMed  Google Scholar 

  111. Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000;49(7):1231–8.

    CAS  PubMed  Google Scholar 

  112. Lundman P, Eriksson MJ, Stuhlinger M, Cooke JP, Hamsten A, Tornvall P. Mild-to-moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine. J Am Coll Cardiol. 2001;38(1):111–6.

    CAS  PubMed  Google Scholar 

  113. Siervo M, Jackson SJ, Bluck LJ. In-vivo nitric oxide synthesis is reduced in obese patients with metabolic syndrome: application of a novel stable isotopic method. J Hypertens. 2011;29(8):1515–27.

    CAS  PubMed  Google Scholar 

  114. Siervo M, Bluck LJ. In vivo nitric oxide synthesis, insulin sensitivity, and asymmetric dimethylarginine in obese subjects without and with metabolic syndrome. Metabolism. 2012;61(5):680–8.

    CAS  PubMed  Google Scholar 

  115. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, et al. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes. 2006;55(8):2301–10.

    CAS  PubMed  Google Scholar 

  116. Lee CH, Lee SD, Ou HC, Lai SC, Cheng YJ. Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci. 2014;15(6):10334–49.

    PubMed Central  PubMed  Google Scholar 

  117. Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005;25(5):989–94.

    CAS  PubMed  Google Scholar 

  118. Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, et al. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res. 2007;100(11):1589–96.

    CAS  PubMed  Google Scholar 

  119. Chen CC, Ke WH, Ceng LH, Hsieh CW, Wung BS. Calcium- and phosphatidylinositol 3-kinase/Akt-dependent activation of endothelial nitric oxide synthase by apigenin. Life Sci. 2010;87(23–26):743–9.

    CAS  PubMed  Google Scholar 

  120. Esenabhalu VE, Schaeffer G, Graier WF. Free fatty acid overload attenuates Ca2+ signaling and NO production in endothelial cells. Antioxid Redox Signal. 2003;5(2):147–53.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the author’s laboratory is supported by funding from the Canadian Institutes of Health Research (CIHR) operating grant number 67037 to AKS. ERSC was a recipient of a studentship from the Faculty of Graduate and Postdoctoral Studies of the University of Montreal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Srivastava PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheyou, E.R.S., Srivastava, A.K. (2015). Vascular Endothelial Dysfunction and Atherosclerosis: Role of Nitric Oxide System. In: Jagadeesh, G., Balakumar, P., Maung-U, K. (eds) Pathophysiology and Pharmacotherapy of Cardiovascular Disease. Adis, Cham. https://doi.org/10.1007/978-3-319-15961-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15961-4_26

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-15960-7

  • Online ISBN: 978-3-319-15961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics