Skip to main content

Nitric Oxide Synthesis in Vascular Physiology and Pathophysiology

  • Chapter
  • First Online:
Endothelial Signaling in Development and Disease

Abstract

Nitric oxide (NO) is produced by three NO synthase (NOS) isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). Under physiological conditions, vascular NO is produced by eNOS and nNOS, with both playing atheroprotective roles. Under pathological conditions, iNOS can be induced and eNOS may become uncoupled. iNOS produces a large amount of NO, induces vascular dysfunction, and promotes atherogenesis. Uncoupled eNOS generates superoxide instead of NO and contributes significantly to endothelial dysfunction and atherogenesis. Major mechanisms of eNOS uncoupling include depletion of tetrahydrobiopterin, an essential co-factor for the eNOS enzyme, and deficiency of L-arginine, the eNOS substrate. Reversal of eNOS uncoupling may represent a novel therapeutic strategy for the prevention and treatment of vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alp NJ, Mcateer MA, Khoo J, et al. Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol. 2004;24:445–50.

    Article  CAS  PubMed  Google Scholar 

  2. Alp NJ, Mussa S, Khoo J, et al. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest. 2003;112:725–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bagnost T, Berthelot A, Bouhaddi M, et al. Treatment with the arginase inhibitor N(omega)-hydroxy-nor-L-arginine improves vascular function and lowers blood pressure in adult spontaneously hypertensive rat. J Hypertens. 2008;26:1110–8.

    Article  CAS  PubMed  Google Scholar 

  4. Beleznai T, Feher A, Spielvogel D, et al. Arginase 1 contributes to diminished coronary arteriolar dilation in patients with diabetes. Am J Physiol Heart Circ Physiol. 2011;300:H777–H83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bhatt SR, Lokhandwala MF, Banday AA. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol. 2011;667:258–64.

    Article  CAS  PubMed  Google Scholar 

  6. Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res. 2005;65:16–27.

    Article  CAS  PubMed  Google Scholar 

  7. Chalupsky K, Cai H. Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2005;102:9056–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chandra S, Romero MJ, Shatanawi A, et al. Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway. Br J Pharmacol. 2012;165:506–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chen J, Kuhlencordt PJ, Astern J, et al. Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial nitric oxide synthase double knockout mice. Circulation. 2001;104:2391–4.

    Article  CAS  PubMed  Google Scholar 

  10. Chen SJ, Li SY, Shih CC, et al. NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats. Shock. 2010;33:473–8.

    Article  PubMed  CAS  Google Scholar 

  11. Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol. 2009;297:H13–H20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Demougeot C, Prigent-Tessier A, Bagnost T, et al. Time course of vascular arginase expression and activity in spontaneously hypertensive rats. Life Sci. 2007;80:1128–34.

    Article  CAS  PubMed  Google Scholar 

  13. Dikalova A, Clempus R, Lassegue B, et al. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation. 2005;112:2668–76.

    Article  CAS  PubMed  Google Scholar 

  14. Dioguardi FS. To give or not to give? Lessons from the arginine paradox. J Nutrigenet Nutrigenomics. 2011;4:90–8.

    Article  CAS  PubMed  Google Scholar 

  15. Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest. 2001;108:1341–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Du YH, Guan YY, Alp NJ, et al. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension. Circulation. 2008;117:1045–54.

    Article  CAS  PubMed  Google Scholar 

  17. Eguchi D, Dʼuscio LV, Wambi C, et al. Inhibitory effect of recombinant iNOS gene expression on vasomotor function of canine basilar artery. Am J Physiol Heart Circ Physiol. 2002;283:H2560–H6.

    Article  CAS  PubMed  Google Scholar 

  18. Erdely A, Kepka-Lenhart D, Salmen-Muniz R, et al. Arginase activities and global arginine bioavailability in wild-type and ApoE-deficient mice: responses to high fat and high cholesterol diets. PLoS One. 2010;5:e15253.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Faria AM, Papadimitriou A, Silva KC, et al. Uncoupling endothelial nitric oxide synthase is ameliorated by green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels. Diabetes. 2012;61:1838–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch. 2010;459:793–806.

    Article  CAS  PubMed  Google Scholar 

  21. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–14.

    Article  PubMed  CAS  Google Scholar 

  22. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37, 837a-837d.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Giri H, Muthuramu I, Dhar M, et al. Protein tyrosine phosphatase SHP2 mediates chronic insulin-induced endothelial inflammation. Arterioscler Thromb Vasc Biol. 2012;32:1943–50.

    Article  CAS  PubMed  Google Scholar 

  24. Gronros J, Jung C, Lundberg JO, et al. Arginase inhibition restores in vivo coronary microvascular function in type 2 diabetic rats. Am J Physiol Heart Circ Physiol. 2011;300:H1174–H81.

    Article  PubMed  CAS  Google Scholar 

  25. Gunnett CA, Lund DD, Mcdowell AK, et al. Mechanisms of inducible nitric oxide synthase-mediated vascular dysfunction. Arterioscler Thromb Vasc Biol. 2005;25:1617–22.

    Article  CAS  PubMed  Google Scholar 

  26. Hayashi T, Esaki T, Sumi D, et al. Modulating role of estradiol on arginase II expression in hyperlipidemic rabbits as an atheroprotective mechanism. Proc Natl Acad Sci U S A. 2006;103:10485–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Heinloth A, Heermeier K, Raff U, et al. Stimulation of NADPH oxidase by oxidized low-density lipoprotein induces proliferation of human vascular endothelial cells. J Am Soc Nephrol. 2000;11:1819–25.

    CAS  PubMed  Google Scholar 

  28. Heitzer T, Krohn K, Albers S, et al. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. Diabetologia. 2000;43:1435–8.

    Article  CAS  PubMed  Google Scholar 

  29. Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88:E14–E22.

    Article  CAS  PubMed  Google Scholar 

  30. Holowatz LA, Kenney WL. Up-regulation of arginase activity contributes to attenuated reflex cutaneous vasodilatation in hypertensive humans. J Physiol. 2007;581:863–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Holowatz LA, Santhanam L, Webb A, et al. Oral atorvastatin therapy restores cutaneous microvascular function by decreasing arginase activity in hypercholesterolaemic humans. J Physiol. 2011;589:2093–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Holowatz LA, Thompson CS, Kenney WL. L-Arginine supplementation or arginase inhibition augments reflex cutaneous vasodilatation in aged human skin. J Physiol. 2006;574:573–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Iadecola C, Zhang F, Casey R, et al. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci. 1997;17:9157–64.

    CAS  PubMed  Google Scholar 

  34. Iadecola C, Zhang F, Xu X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol. 1995;268:R286–R92.

    CAS  PubMed  Google Scholar 

  35. Johnson FK, Johnson RA, Peyton KJ, et al. Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt-induced hypertension. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1057–R62.

    Article  CAS  PubMed  Google Scholar 

  36. Kang KT, Sullivan JC, Spradley FT, et al. Antihypertensive therapy increases tetrahydrobiopterin levels and NO/cGMP signaling in small arteries of angiotensin II-infused hypertensive rats. Am J Physiol Heart Circ Physiol. 2011;300:H718–H24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kashyap SR, Lara A, Zhang R, et al. Insulin reduces plasma arginase activity in type 2 diabetic patients. Diabetes Care. 2008;31:134–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kauser K, Cunha V D, Fitch R, et al. Role of endogenous nitric oxide in progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol. 2000;278:H1679–H85.

    CAS  PubMed  Google Scholar 

  39. Kellogg DL Jr, Zhao JL, Wu Y. Neuronal nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. J Physiol. 2008;586:847–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kessler P, Bauersachs J, Busse R, et al. Inhibition of inducible nitric oxide synthase restores endothelium-dependent relaxations in proinflammatory mediator-induced blood vessels. Arterioscler Thromb Vasc Biol. 1997;17:1746–55.

    Article  CAS  PubMed  Google Scholar 

  41. Kim JH, Bugaj LJ, Oh YJ, et al. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J Appl Physiol. 2009;(1985) 107:1249–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kosenko E, Tikhonova L, Suslikov A, et al. Impacts of lisinopril and lisinopril plus simvastatin on erythrocyte and plasma arginase, nitrite, and nitrate in hypertensive patients. J Clin Pharmacol. 2012;52:102–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kuhlencordt PJ, Chen J, Han F, et al. Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation. 2001;103:3099–104.

    Article  CAS  PubMed  Google Scholar 

  44. Kuhlencordt PJ, Gyurko R, Han F, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation. 2001;104:448–54.

    Article  CAS  PubMed  Google Scholar 

  45. Kuhlencordt PJ, Hotten S, Schodel J, et al. Atheroprotective effects of neuronal nitric oxide synthase in apolipoprotein e knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:1539–44.

    Article  CAS  PubMed  Google Scholar 

  46. Landmesser U, Cai H, Dikalov S, et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension. 2002;40:511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111:1201–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103:1282–8.

    Article  CAS  PubMed  Google Scholar 

  49. Li H, Forstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol. 2000;190:244–54.

    Article  CAS  PubMed  Google Scholar 

  50. Li H, Forstermann U. Pharmacological Prevention of eNOS Uncoupling. Curr Pharm Des. 2014;20:3595–606.

    Article  CAS  PubMed  Google Scholar 

  51. Li H, Forstermann U. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des. 2009;15:3133–45.

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Forstermann U. Structure-activity relationship of staurosporine analogs in regulating expression of endothelial nitric-oxide synthase gene. Mol Pharmacol. 2000;57:427–35.

    CAS  PubMed  Google Scholar 

  53. Li H, Forstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol. 2013;13:161–7.

    Article  PubMed  CAS  Google Scholar 

  54. Li H, Horke S, Forstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci. 2013;34:313–9.

    Article  PubMed  CAS  Google Scholar 

  55. Li H, Wallerath T, Munzel T, et al. Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide. 2002;7:149–64.

    Article  CAS  PubMed  Google Scholar 

  56. Li H, Witte K, August M, et al. Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol. 2006;47:2536–44.

    Article  CAS  PubMed  Google Scholar 

  57. Liaudet L, Rosenblatt-Velin N, Pacher P. Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Curr Vasc Pharmacol. 2013;11:196–207.

    CAS  PubMed  Google Scholar 

  58. Liu VW, Huang PL. Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res. 2008;77:19–29.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Marfella R, Filippo C D, Esposito K, et al. Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes. 2004;53:454–62.

    Article  CAS  PubMed  Google Scholar 

  60. Matsuno K, Yamada H, Iwata K, et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation. 2005;112:2677–85.

    Article  CAS  PubMed  Google Scholar 

  61. Melikian N, Seddon MD, Casadei B, et al. Neuronal nitric oxide synthase and human vascular regulation. Trends Cardiovasc Med. 2009;19:256–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ming XF, Barandier C, Viswambharan H, et al. Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation. 2004;110:3708–14.

    Article  CAS  PubMed  Google Scholar 

  63. Mollnau H, Wendt M, Szocs K, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90:E58–E65.

    Article  PubMed  Google Scholar 

  64. Morishita T, Tsutsui M, Shimokawa H, et al. Vasculoprotective roles of neuronal nitric oxide synthase. FASEB J. 2002;16:1994–6.

    CAS  PubMed  Google Scholar 

  65. Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310:314–7.

    Article  CAS  PubMed  Google Scholar 

  66. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Pannirselvam M, Simon V, Verma S, et al. Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Br J Pharmacol. 2003;140:701–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Pannirselvam M, Verma S, Anderson TJ, et al. Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db -/-) mice: role of decreased tetrahydrobiopterin bioavailability. Br J Pharmacol. 2002;136:255–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Pautz A, Art J, Hahn S, et al. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 2010;23:75–93.

    Article  CAS  PubMed  Google Scholar 

  70. Pernow J, Jung C. Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc Res. 2013;98:334–43.

    Article  CAS  PubMed  Google Scholar 

  71. Ponnuswamy P, Schrottle A, Ostermeier E, et al. eNOS protects from atherosclerosis despite relevant superoxide production by the enzyme in apoE mice. PLoS One. 2012;7:e30193.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Pritchard KA Jr, Groszek L, Smalley DM, et al. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res. 1995;77:510–8.

    Article  CAS  PubMed  Google Scholar 

  73. Quitter F, Figulla HR, Ferrari M, et al. Increased arginase levels in heart failure represent a therapeutic target to rescue microvascular perfusion. Clin Hemorheol Microcirc. 2013;54:75–85.

    CAS  PubMed  Google Scholar 

  74. Rodriguez S, Richert L, Berthelot A. Increased arginase activity in aorta of mineralocorticoid-salt hypertensive rats. Clin Exp Hypertens. 2000;22:75–85.

    Article  CAS  PubMed  Google Scholar 

  75. Romero MJ, Iddings JA, Platt DH, et al. Diabetes-induced vascular dysfunction involves arginase I. Am J Physiol Heart Circ Physiol. 2012;302:H159–H66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Romero MJ, Platt DH, Tawfik HE, et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res. 2008;102:95–102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Ryoo S, Bhunia A, Chang F, et al. OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling. Atherosclerosis. 2011;214:279–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Ryoo S, Gupta G, Benjo A, et al. Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ Res. 2008;102:923–32.

    Article  CAS  PubMed  Google Scholar 

  79. Ryoo S, Lemmon CA, Soucy KG, et al. Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ Res. 2006;99:951–60.

    Article  CAS  PubMed  Google Scholar 

  80. Schodel J, Padmapriya P, Marx A, et al. Expression of neuronal nitric oxide synthase splice variants in atherosclerotic plaques of apoE knockout mice. Atherosclerosis. 2009;206:383–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Schuhmacher S, Oelze M, Bollmann F, et al. Vascular dysfunction in experimental diabetes is improved by pentaerithrityl tetranitrate but not isosorbide-5-mononitrate therapy. Diabetes. 2011;60:2608–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Schuhmacher S, Wenzel P, Schulz E, et al. Pentaerythritol tetranitrate improves angiotensin II-induced vascular dysfunction via induction of heme oxygenase-1. Hypertension. 2010;55:897–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Schulman SP, Becker LC, Kass DA, et al. L-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006;295:58–64.

    Article  CAS  PubMed  Google Scholar 

  84. Schwarz PM, Kleinert H, Forstermann U. Potential functional significance of brain-type and muscle-type nitric oxide synthase I expressed in adventitia and media of rat aorta. Arterioscler Thromb Vasc Biol. 1999;19:2584–90.

    Article  CAS  PubMed  Google Scholar 

  85. Seddon M, Melikian N, Dworakowski R, et al. Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation. 2009;119:2656–62.

    Article  CAS  PubMed  Google Scholar 

  86. Seddon MD, Chowienczyk PJ, Brett SE, et al. Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation. 2008;117:1991–6.

    Article  CAS  PubMed  Google Scholar 

  87. Shatanawi A, Romero MJ, Iddings JA, et al. Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/arginase pathway. Am J Physiol Cell Physiol. 2011;300:C1181–C92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Shelkovnikov S, Gonick HC. Peroxynitrite but not nitric oxide donors destroys epinephrine: HPLC measurement and rat aorta contractility. Life Sci. 2004;75:2765–73.

    Article  CAS  PubMed  Google Scholar 

  89. Shemyakin A, Kovamees O, Rafnsson A, et al. Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus. Circulation. 2012;126:2943–50.

    Article  CAS  PubMed  Google Scholar 

  90. Shinozaki K, Kashiwagi A, Nishio Y, et al. Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2- imbalance in insulin-resistant rat aorta. Diabetes. 1999;48:2437–45.

    Article  CAS  PubMed  Google Scholar 

  91. Shinozaki K, Nishio Y, Okamura T, et al. Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin-resistant rats. Circ Res. 2000;87:566–73.

    Article  CAS  PubMed  Google Scholar 

  92. Stepp DW, Ou J, Ackerman AW, et al. Native LDL and minimally oxidized LDL differentially regulate superoxide anion in vascular endothelium in situ. Am J Physiol Heart Circ Physiol. 2002;283:H750–H9.

    Article  CAS  PubMed  Google Scholar 

  93. Stroes E, Kastelein J, Cosentino F, et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest. 1997;99:41–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Taguchi K, Kobayashi T, Matsumoto T, et al. Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice. Am J Physiol Heart Circ Physiol. 2011;301:H571–H83.

    Article  CAS  PubMed  Google Scholar 

  95. Toque HA, Tostes RC, Yao L, et al. Arginase II deletion increases corpora cavernosa relaxation in diabetic mice. J Sex Med. 2011;8:722–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Tsutsui M. Neuronal nitric oxide synthase as a novel anti-atherogenic factor. J Atheroscler Thromb. 2004;11:41–8.

    Article  CAS  PubMed  Google Scholar 

  97. Ueda S, Matsuoka H, Miyazaki H, et al. Tetrahydrobiopterin restores endothelial function in long-term smokers. J Am Coll Cardiol. 2000;35:71–5.

    Article  CAS  PubMed  Google Scholar 

  98. Umeji K, Umemoto S, Itoh S, et al. Comparative effects of pitavastatin and probucol on oxidative stress, Cu/Zn superoxide dismutase, PPAR-gamma, and aortic stiffness in hypercholesterolemia. Am J Physiol Heart Circ Physiol. 2006;291:H2522–H32.

    Article  CAS  PubMed  Google Scholar 

  99. Vaisman BL, Andrews KL, Khong SM, et al. Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice. PLoS One. 2012;7:e39487.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Virdis A, Colucci R, Fornai M, et al. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. J Pharmacol Exp Ther. 2005;312:945–53.

    Article  CAS  PubMed  Google Scholar 

  101. Wenzel P, Daiber A, Oelze M, et al. Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis. 2008;198:65–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Wilson AM, Harada R, Nair N, et al. L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116:188–95.

    Article  CAS  PubMed  Google Scholar 

  103. Wohlfart P, Xu H, Endlich A, et al. Antiatherosclerotic effects of small-molecular-weight compounds enhancing endothelial nitric-oxide synthase (eNOS) expression and preventing eNOS uncoupling. J Pharmacol Exp Ther. 2008;325:370–9.

    Article  CAS  PubMed  Google Scholar 

  104. Xia N, Daiber A, Habermeier A, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther. 2010;335:149–54.

    Article  CAS  PubMed  Google Scholar 

  105. Xia N, Pautz A, Wollscheid U, et al. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells. Molecules. 2014;19:3654–68.

    Article  PubMed  CAS  Google Scholar 

  106. Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A. 1997;94:6954–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Xiong Y, Fru MF, Yu Y, et al. Long term exposure to L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling. Aging. 2014;6:369–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Xu J, Wu Y, Song P, et al. Proteasome-dependent degradation of guanosine 5ʹ-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation. 2007;116:944–53.

    Article  CAS  PubMed  Google Scholar 

  109. Yang Z, Ming XF. Arginase: the emerging therapeutic target for vascular oxidative stress and inflammation. Front Immunol. 2013;4:149.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Yao L, Chandra S, Toque HA, et al. Prevention of diabetes-induced arginase activation and vascular dysfunction by Rho kinase (ROCK) knockout. Cardiovasc Res. 2013;97:509–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Yepuri G, Velagapudi S, Xiong Y, et al. Positive crosstalk between arginase-II and S6K1 in vascular endothelial inflammation and aging. Aging Cell. 2012;11:1005–16.

    Article  CAS  PubMed  Google Scholar 

  112. Youn JY, Wang T, Blair J, et al. Endothelium-specific sepiapterin reductase deficiency in DOCA-salt hypertension. Am J Physiol Heart Circ Physiol. 2012;302:H2243–H9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Zhou X, Bohlen HG, Miller SJ, et al. NAD(P)H oxidase-derived peroxide mediates elevated basal and impaired flow-induced NO production in SHR mesenteric arteries in vivo. Am J Physiol Heart Circ Physiol. 2008;295:H1008–H16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huige Li MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, H., Xia, N., Förstermann, U. (2015). Nitric Oxide Synthesis in Vascular Physiology and Pathophysiology. In: Schmidt, M., Liebner, S. (eds) Endothelial Signaling in Development and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2907-8_16

Download citation

Publish with us

Policies and ethics