Skip to main content

Advertisement

Log in

Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Novel formulations of nano-hydroxyapatite (nano-HAp) and nano-HAp/chitosan composites have attracted much attention in these last years. The use of natural chitosan is found to be potential for fabrication of modified nano-HAp with many biomedical applications such as orthopedic, osteoconductive, dental and drug delivery applications. This review summarizes the different techniques employed for the elaboration of HAp nanoparticles and the effect of the incorporation of HAp with chitosan on the fabrication of nano-HAp composite and on their physical properties. We discuss the effects of the reaction conditions such as reaction time, temperature, pH, solvent nature, surfactants, and concentration of reactants on crystallinity, particle size, morphology and properties of nano-HAp composite. The nano-HAp progress and the present status of HAp (either experimental or theoretical results) have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nunes CR, Simske SJ, Sachdeva R, Woldord LM (1997) Long-term in growth and apposition of porous hydroxyapatite implants. J Biomed Mater Res 36:560–563. https://doi.org/10.1002/(sici)1097-4636(19970915)36:4%3c560:aid-jbm15%3e3.0.co;2-e

    Article  CAS  PubMed  Google Scholar 

  2. Vallet-Regi M, Gonsalez-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32:1–31. https://doi.org/10.1016/j.progsolidstchem.2004.07.001

    Article  CAS  Google Scholar 

  3. Nathanael AJ, Mangalaraj D, Chi Chen P, Ponpandian N (2011) Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene. J Nanopart Res 13:1841–1853. https://doi.org/10.1007/s11051-010-9932-3

    Article  CAS  Google Scholar 

  4. Thanigaiarul K, Elayaraja K, Magudapathy P, Nair KGM, Sudarshan M, Krishna JBM, Chakraborty A (2013) Surface modification of nanocrystalline calcium phosphate bioceramic by low energy nitrogen ion implantation. Ceram Int 39:3027–3034. https://doi.org/10.1016/j.ceramint.2012.09.081

    Article  CAS  Google Scholar 

  5. Nathanael AJ, Hong SI, Mangalaraj D, Ponpandian N, Chen PC (2012) Template-free growth of novel hydroxyapatite nanorings: formation mechanism and their enhanced functional properties. Cryst Growth Des 12:3565–3574. https://doi.org/10.1021/cg3003959

    Article  CAS  Google Scholar 

  6. LeGros RZ (1991) Calcium phosphates in oral biology and medicine, monographs in oral science, vol 15. Karger, Basel, pp 1–201. https://doi.org/10.1159/isbn.978-3-318-04021-0

    Book  Google Scholar 

  7. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and material importance. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, DC, 48: 427–454. ISBN: 0-939950-60-X; ISBN: 13 978-0-939950-60-7

  8. Orlovskii VP, Komlev VS, Barinov SM (2002) Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater 38:973–984. https://doi.org/10.1023/A:1020585800572

    Article  CAS  Google Scholar 

  9. Kanno CM, Sanders RL, Flynn SM, Lessard G, Myneni S (2014) Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro crystalline Hydroxyapatite-coated-limestone. Environ Sci Technol 48:5798–5807. https://doi.org/10.1021/es405135r (in Press)

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Liu Y, Sun WB, Zhang H (2011) Amorphous calcium phosphate and its application in dentistry. Chem Cent J 5:40. https://doi.org/10.1186/1752-153x-5-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711. https://doi.org/10.1016/s0142-9612(00)00305-7

    Article  CAS  PubMed  Google Scholar 

  12. Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H (2005) Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA–PEG/hydroxyapatite composite. Biomaterials 26:73–79. https://doi.org/10.1016/j.biomaterials.2004.02.010

    Article  CAS  PubMed  Google Scholar 

  13. Itoh S, Kikuchi M, Koyama Y, Takakuda K, Shinomiya K, Tanaka J (2002) Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials 23:3919–3926. https://doi.org/10.1016/s0142-9612(02)00126-6

    Article  CAS  PubMed  Google Scholar 

  14. Fu Q, Zhou N, Huang W, Wang D, Zhang L, Li H (2005) Effects of nano HAp on biological and structural properties of glass bone cement. J Biomed Mater Res A 74:156–163. https://doi.org/10.1002/jbm.a.30322

    Article  CAS  PubMed  Google Scholar 

  15. Uskokovic V, Uskokovic DP (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater 96:152–191. https://doi.org/10.1002/jbm.b.31746

    Article  CAS  PubMed  Google Scholar 

  16. Kano S, Yamazaki A, Otsuka R, Akao M, Aoki H (1993) Use of hydroxyapatite small crystals as drug carrier. Drug Deliv Syst 8(6):467–471. https://doi.org/10.2745/dds.8.467

    Article  CAS  Google Scholar 

  17. Uskokovic V, Dessai TA (2013) Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis part 2: antibacterial and osteoblastic response. J Biomed Mater Res Part A 101:1427–1436. https://doi.org/10.1002/jbm.a.34437

    Article  CAS  Google Scholar 

  18. Barroug A, Glimcher MJ (2002) Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res 20:274–280. https://doi.org/10.1016/s0736-0266(01)00105-x

    Article  CAS  PubMed  Google Scholar 

  19. Shinto Y, Uchida A, Korkusuz F, Araki NN, Ono K (1992) Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J Bone Jt Surg 74:600–604 (PMID: 1320622)

    Article  CAS  Google Scholar 

  20. Vallet-Regi M (2001) Ceramics for medical applications. J Chem Soc Dalton Trans. https://doi.org/10.1039/b007852m

    Article  Google Scholar 

  21. Okada M, Matsumoto T (2015) Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Jpn Dent Sci Rev 51:85–95. https://doi.org/10.1016/j.jdsr.2015.03.004

    Article  Google Scholar 

  22. Woo KM, Seo J, Zhang R, Ma PX (2007) Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials 28:2622–2630. https://doi.org/10.1016/j.biomaterials.2007.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Z, Yubao L, Aiping Y, Xuelin P, Xuejiang W, Xiang Z (2005) Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med 16:213–219. https://doi.org/10.1007/s10856-005-6682-3

    Article  CAS  PubMed  Google Scholar 

  24. Mekmene O, Quillard S, Rouillon T, Bouler JM, Piot M, Gaucheron F (2009) Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Sci Technol 89:301–316. https://doi.org/10.1051/dst/2009019

    Article  CAS  Google Scholar 

  25. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810. https://doi.org/10.1016/s0142-9612(00)00075-2

    Article  CAS  PubMed  Google Scholar 

  26. Anitha P, Haresh MP (2013) Comprehensive review of preparation methodologies of nanohydroxyapatite. J Environ Nanotechnol 4:101–121. https://doi.org/10.13074/jent.2013.12.132058

    Article  Google Scholar 

  27. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621. https://doi.org/10.1016/j.actbio.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  28. Earl JS, Wood DJ, Milne SJ (2006) Hydrothermal synthesis of hydroxyapatite. J Phys Conf Ser 26:268–271. https://doi.org/10.1088/1742-6596/26/1/064

    Article  CAS  Google Scholar 

  29. Zhang F, Zhou ZH, Yang SP, Mao LH, Chen HM, Yu XB (2005) Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater Lett 59:1422–1425. https://doi.org/10.1016/j.matlet.2004.11.058

    Article  CAS  Google Scholar 

  30. Parhi P, Ramanan A, Ray AR (2004) A convenient route for the synthesis of hydroxyapatite through a novel microwave-mediated metathesis reaction. Mater Lett 58:3610–3612. https://doi.org/10.1016/j.matlet.2004.06.056

    Article  CAS  Google Scholar 

  31. Arita IH, Wilkinson DS, Mondragon MA, Castano VM (1995) Chemistry and sintering behaviour of thin hydroxyapatite ceramics with controlled porosity. Biomaterials 16:403–408. https://doi.org/10.1016/0142-9612(95)98858-b

    Article  CAS  PubMed  Google Scholar 

  32. Furuzono T, Walsh D, Yasuda S, Sato K, Tanaka J, Kishida A (2005) Preparation of plated β-tricalcium phosphate containing hydroxyapatite for use in bonded inorganic–organic composites. J Mater Sci 40:2595–2597. https://doi.org/10.1007/s10853-005-2083-8

    Article  CAS  Google Scholar 

  33. Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6:715–734. https://doi.org/10.1016/j.actbio.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  34. Dorozhkin SV (2010) Amorphous calcium orthophosphates. Acta Biomater 6:4457–4475. https://doi.org/10.1016/j.actbio.2010.06.031

    Article  CAS  PubMed  Google Scholar 

  35. He WH, Tao JH, Pan HH, Xu XR, Tang RK (2010) A size-controlled synthesis of hollow apatite nanospheres at water–oil interfaces. Chem Lett 39:674–675. https://doi.org/10.1246/cl.2010.674

    Article  CAS  Google Scholar 

  36. Katsuki H, Furuta S, Komarneni S (1999) Microwave-versus conventional hydrothermal synthesis of Hydroxyapatite crystals from gypsum. J Am Ceram Soc 82:2257–2259. https://doi.org/10.1111/j.1151-2916.1999

    Article  CAS  Google Scholar 

  37. Sarig S, Kahana F (2002) Rapid formation of nanocrystalline apatite. J Cryst Growth 237–239:55–59. https://doi.org/10.1016/s0022-0248(01)01850-4

    Article  Google Scholar 

  38. Pramanik S, Agarwal AK, Rai KN, Garg A (2007) Development of high strength hydroxyapatite by solid-state-sintering process. Ceram Int 33:419–426. https://doi.org/10.1016/j.ceramint.2005.10.025

    Article  CAS  Google Scholar 

  39. Han JK, Song HY, Saito F, Lee BT (2006) Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater Chem Phys 99:235–239. https://doi.org/10.1016/j.matchemphys.2005.10.017

    Article  CAS  Google Scholar 

  40. Wei M, Ruys AJ, Milthorpe BK, Sorrell CC (1999) Solution ripening of Hydroxyapatite nanoparticles: effects on electrophoretic deposition. J Biomed Mater Res 45:11–19. https://doi.org/10.1002/(sici)1097-4636(199904)45:1%3c11:AID-JBM2%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  41. Chen ZT, Gao L (2008) A new route toward ZnO hollow spheres by a base-erosion mechanism. Cryst Growth Des 8:460–464. https://doi.org/10.1021/cg070277b

    Article  CAS  Google Scholar 

  42. Bigi A, Fini M, Bracci B, Boanini E, Torricelli P, Giavaresi G, Aldini NN, Facchini A, Sbaiz F, Giardino R (2008) The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials 29:1730–1736. https://doi.org/10.1016/j.biomaterials.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  43. Khalid M, Mujahid M, Amin S, Rawat RS, Nusair A, Deen GR (2013) Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram Int 39:39–50. https://doi.org/10.1016/j.ceramint.2012.05.090

    Article  CAS  Google Scholar 

  44. Murray MGS, Wang J, Ponton CB, Marquis PM (1995) An improvement in processing of hydroxyapatite ceramics. J Mater Sci 30:3061–3074. https://doi.org/10.1007/bf01209218

    Article  CAS  Google Scholar 

  45. Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS (2002) Solution synthesis of hydroxyapatite designer particulates. Solid State Ion 151:393–402. https://doi.org/10.1016/s0167-2738(02)00545-3

    Article  CAS  Google Scholar 

  46. Cho JS, Kang YC (2008) Nano-sized Hydroxyapatite powders prepared by flame spray pyrolysis. J Alloys Compd 464:282–287. https://doi.org/10.1016/j.jallcom.2007.09.092

    Article  CAS  Google Scholar 

  47. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA (1999) Quantification of bone in growth within bone-derived porous hydroxyapatite implants of varying density. J Mater Sci Mater Med 10:663–670. https://doi.org/10.1023/a:1008900127475

    Article  CAS  PubMed  Google Scholar 

  48. Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005) Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res Part A 75:275–282. https://doi.org/10.1002/jbm.a.30414

    Article  CAS  Google Scholar 

  49. Venkatesan J, Kim SK (2012) Nanostructured hydroxyapatite-chitosan composite biomaterial for bone tissue engineering. Adv Mater Res 584:212–216. https://doi.org/10.4028/www.scientific.net/AMR.584.212

    Article  CAS  Google Scholar 

  50. Shen XY, Chen L, Cai XA, Tong T, Tong H, Hu JM (2011) A Novel method for the fabrication of homogeneous hydroxyapatite-collagen nanocomposite and nanocomposite scaffold with hierarchical porosity. J Mater Sci Mater Med 22:299–305. https://doi.org/10.1007/s10856-010-4199-x

    Article  CAS  PubMed  Google Scholar 

  51. Sakthivel P, Ragu A (2015) Synthesis and characterization of nano hydroxyapatite with polymer matrix nano composite for biomedical applications. Int J Chem Environ Biol Sci 3:2320–4087. ISSN: 2320–4087

  52. Azevedo MC, Reis RL, Claase MB, Grijpma DW, Feijen J (2003) Development and properties of polycaprolactone-hydroxyapatite composite biomaterials. J Mater Sci Mater Med 14:103–107. https://doi.org/10.1023/a:1022051326282

    Article  CAS  PubMed  Google Scholar 

  53. Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohyd Polym 93:256–262. https://doi.org/10.1016/j.carbpol.2012.06.004

    Article  CAS  Google Scholar 

  54. Chen F, Wang ZC, Lin CJ (2002) Preparation and characterization of nano-sized hydroxyapatite particles and Hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett 57:858–861. https://doi.org/10.1016/s0167-577x(02)00885-6

    Article  CAS  Google Scholar 

  55. Murugan R, Ramakrishna S (2004) Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25:3829–3835. https://doi.org/10.1016/j.biomaterials.2003.10.016

    Article  CAS  PubMed  Google Scholar 

  56. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan based micro- and nanoparticles in drug delivery. J Control Release 100:5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  57. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792. https://doi.org/10.1016/j.eurpolymj.2012.12.009

    Article  CAS  Google Scholar 

  58. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51:586–595. https://doi.org/10.1002/1097-4636(20000915)51:4%3c586:AID-JBM6%3e3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  59. Risbud M, Endres M, Ringe J, Bhonde R, Sittinger M (2001) Biocompatible hydrogel supports the growth of respiratory epithelial cells: possibilities in tracheal tissue engineering. J Biomed Mater Res 56:120–127. https://doi.org/10.1002/1097-4636(200107)56:1%3c120:aid-jbm1076%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  60. Ge Z, Baguenard S, Lim LY, Wee A, Khor E (2004) Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049–1058. https://doi.org/10.1016/s0142-9612(03)00612-4

    Article  CAS  PubMed  Google Scholar 

  61. Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan–montmorillonite–hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:034122. https://doi.org/10.1088/1748-6041/3/3/034122

    Article  CAS  PubMed  Google Scholar 

  62. Li F, Liu Y, Ding Y, Xie QA (2014) new injectable in situ forming hydroxyapatite and thermosensitive chitosan gel promoted by Na2CO3. Soft Matter 10:2292–2303. https://doi.org/10.1039/c3sm52508b

    Article  CAS  PubMed  Google Scholar 

  63. Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34:4404–4417. https://doi.org/10.1016/j.biomaterials.2013.02.048

    Article  CAS  PubMed  Google Scholar 

  64. Klokkevold PR, Subar P, Fukayama H, Bertolami CN (1992) Effect of chitosan on lingual hemostasis in rabbits with platelet dysfunction induced by epoprostenol. J Oral Maxillofac Surg 50:41–45. https://doi.org/10.1016/0278-2391(92)90194-5

    Article  CAS  PubMed  Google Scholar 

  65. Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142. https://doi.org/10.1016/s0142-9612(99)00011-3

    Article  CAS  PubMed  Google Scholar 

  66. Yang PP, Quan ZW, Li CX, Kang XJ, Lian HZ, Lin J (2008) Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 29:4341–4347. https://doi.org/10.1016/j.biomaterials.2008.07.042

    Article  CAS  PubMed  Google Scholar 

  67. Kuhne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M (1994) Bone formation in coralline hydroxyapatite: effects of pore size studied in rabbits. Acta Orthop Scand 65:246–252. https://doi.org/10.3109/17453679408995448

    Article  CAS  PubMed  Google Scholar 

  68. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and mechanical properties of chitosan/hydroxyapatite nanocomposites. Key Eng Mater 192–195:673–676. https://doi.org/10.4028/www.scientific.net/KEM.192-195.673

    Article  Google Scholar 

  69. Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS (2009) Chitosan-nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A 88:569–580. https://doi.org/10.1002/jbm.a.31897

    Article  CAS  PubMed  Google Scholar 

  70. López-Macipe A, Gómez-Morales J, Rodriguez-Clemente R (1998) Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater 10:49–53. https://doi.org/10.1002/(sici)1521-4095(199801)10:1%3c49:aid-adma49%3e3.0.co;2-r

    Article  Google Scholar 

  71. Ma MG, Zhu JF (2009) Solvothermal synthesis and characterization of hierarchically nanostructured hydroxyapatite hollow spheres. Eur J Inorg Chem 36:5522–5526. https://doi.org/10.1002/ejic.200900839

    Article  CAS  Google Scholar 

  72. Fu H, Rahaman MN, Day DE, Brown RF (2011) Hollow Hydroxyapatite microspheres as a device for controlled delivery of proteins. J Mater Sci Mater Med 22:591–597. https://doi.org/10.1007/s10856-011-4250-6

    Article  CAS  Google Scholar 

  73. Chaudhry AA, Haque S, Kellici S et al (2006) Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem Commun 4(21):2286–2288. https://doi.org/10.1039/b518102j

    Article  CAS  Google Scholar 

  74. Chaudhry AA, Yan H, Gong K, Inam F, Reece Viola G MJ, Goodall JBM (2011) High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater 7(2):791–799. https://doi.org/10.1016/j.actbio.2010.09.029

    Article  CAS  PubMed  Google Scholar 

  75. Yeong KCB, Wang J, Ng SC (2001) Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 22:2705–2712. https://doi.org/10.1016/s0142-9612(00)00257-x

    Article  CAS  Google Scholar 

  76. Ramli RA, Adnan R, Bakar MA, Masudi SM (2011) Synthesis and characterization of pure nanoporous hydroxyapatite. J Phys Sci 22:25–37 (PMID:1320622)

    CAS  Google Scholar 

  77. Zhu J, Kong D, Zhang Y, Yao N, Tao Y, Qiu T (2011) The influence of conditions on synthesis hydroxyapatite by chemical precipitation method. Mater Sci Eng 18:062023. https://doi.org/10.1088/1757-899x/18/6/062023

    Article  Google Scholar 

  78. Mendes LC, Ribeiro GL, Marques RC (2012) In situ hydroxyapatite synthesis: influence of collagen on its structural and morphological characteristic. Mater Sci Appl 3:580–586. https://doi.org/10.4236/msa.2012.38083

    Article  CAS  Google Scholar 

  79. Vijayalakshmi U, Rajeswari S (2012) Influence of process parameters on the sol–gel synthesis of nanohydroxyapatite using various phosphorus precursors. J Sol Gel Sci Technol 63:45–55. https://doi.org/10.1007/s10971-012-2762-2

    Article  CAS  Google Scholar 

  80. Jillavenkatesa A, Condrate RA (1998) Sol–gel processing of hydroxyapatite. J Mater Sci 33:4111–4119. https://doi.org/10.1023/a:1004436732282

    Article  CAS  Google Scholar 

  81. Ramachandra Rao R, Roopa HN, Kannan TS (1997) Solid state synthesis and thermal stability of HAP and HAP-beta-TCP composite ceramic powders. J Mater Sci Mater Med 8:511–518. https://doi.org/10.1023/a:1018586412270

    Article  CAS  Google Scholar 

  82. Kothapalli CR, Wei M, Legeros RZ, Shaw MT (2005) Influence of temperature and aging time on HAp synthesized by the hydrothermal method. J Mater Sci Mater Med 16:441–446. https://doi.org/10.1007/s10856-005-6984-5

    Article  CAS  PubMed  Google Scholar 

  83. Cihlar J, Castkova K (2002) Direct synthesis of nanocrystalline hydroxyapatite by hydrothermal hydrolysis of alkylphosphates. Monatshefte für Chemie/Chem Mon 133:761–771. https://doi.org/10.1007/s007060200048

    Article  CAS  Google Scholar 

  84. Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H (2003) The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int 29:629–633. https://doi.org/10.1016/s0272-8842(02)00210-9

    Article  CAS  Google Scholar 

  85. Du X, Chu Y, Xing S, Dong L (2009) Hydrothermal synthesis of calcium hydroxyapatite nanorods in the presence of PVP. J Mater Sci 44:6273–6279. https://doi.org/10.1007/s10853-009-3860-6

    Article  CAS  Google Scholar 

  86. Kumar V, Prakash K, Cheang P, Khor K (2004) Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles. Langmuir 20:5196–5200. https://doi.org/10.1021/la049304f

    Article  CAS  PubMed  Google Scholar 

  87. Wang A, Liu D, Yin H, Wu H, Wada Y, Ren M, Jiang T, Chen X, Xu Y (2007) Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers. Mater Sci Eng C 27:865–869. https://doi.org/10.1016/j.msec.2006.10.001

    Article  CAS  Google Scholar 

  88. Ioku K, Yamauchi S, Fujimori H, Goto S, Yoshimura M (2002) Hydrothermal preparation of fibrous apatite and apatite sheet. Solid State Ion 151:147–150. https://doi.org/10.1016/s0167-2738(02)00593-3

    Article  CAS  Google Scholar 

  89. Zhang S, Gonsalves K (1997) Preparation and characterization of thermally stable nanohydroxyapatite. J Mater Sci Mater Med 8:25–28. https://doi.org/10.1023/a:1018586128257

    Article  PubMed  Google Scholar 

  90. Wang YJ, Chen JD, Wei K, Zhang SH, Wang XD (2006) Surfactant-assisted synthesis of hydroxyapatite particles. Mater Lett 60:3227–3231. https://doi.org/10.1016/j.matlet.2006.02.077

    Article  CAS  Google Scholar 

  91. Wang Y, Zhang S, Wei K, Zhao N, Chen J, Wang X (2006) Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett 60:1484–1487. https://doi.org/10.1016/j.matlet.2005.11.053

    Article  CAS  Google Scholar 

  92. Jokanovic V, Izvonar D, Dramicanin MD et al (2006) Hydrothermal synthesis and nanostructured of carbonated calcium Hydroxyapatite. J Mater Sci Mater Med 17:539–546. https://doi.org/10.1007/s10856-006-8937-z

    Article  CAS  PubMed  Google Scholar 

  93. Chen JD, Wang YJ, Wei K, Zhang SH, Shi XT (2007) Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials 28:2275–2280. https://doi.org/10.1016/j.biomaterials.2007.01.033

    Article  CAS  PubMed  Google Scholar 

  94. Jinawath S, Pongkao D, Yoshimura M (2002) Hydrothermal synthesis of hydroxyapatite from natural source. J Mater Sci Mater Med 13:491–494. https://doi.org/10.1023/a:1014774923619

    Article  CAS  PubMed  Google Scholar 

  95. Yan L, Li Y, Deng ZX, Zhuang J, Sun X (2001) Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int J Inorg Mater 3:633–637. https://doi.org/10.1016/s1466-6049(01)00164-7

    Article  CAS  Google Scholar 

  96. Abdel-Aal EA, El-Midany AA, El-Shall H (2008) Mechanochemical–hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design. Mater Chem Phys 112:202–207. https://doi.org/10.1016/j.matchemphys.2008.05.053

    Article  CAS  Google Scholar 

  97. Coreno AJ, Coreno AO, Cruz RJJ, Rodriguez CC (2005) Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Opt Mater 27:1281–1285. https://doi.org/10.1016/j.optmat.2004.11.025

    Article  CAS  Google Scholar 

  98. Nakamura S, Isobe T, Senna M (2001) Hydroxyapatite nano sol prepared via a mechanochemical route. J Nanopart Res 3:57–61. https://doi.org/10.1023/a:1011407814795

    Article  CAS  Google Scholar 

  99. Nasiri Tabrizi B, Honarmandi P, Ebraihimi-Kahrizsangi R, Honarmandi P (2009) Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater Lett 63:543–546. https://doi.org/10.1016/j.matlet.2008.11.030

    Article  CAS  Google Scholar 

  100. Ota Y, Iwashita T, Kasuga T, Abe Y (1998) Novel preparation method of hydroxyapatite fibers. J Am Ceram Soc 81:1665–1668. https://doi.org/10.1111/j.1151-2916.1998.tb02529.x

    Article  CAS  Google Scholar 

  101. Rhee SH (2002) Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 23:1147–1152. https://doi.org/10.1016/s0142-9612(01)00229-0

    Article  CAS  PubMed  Google Scholar 

  102. Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS (2004) Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials 25:4647–4657. https://doi.org/10.1016/j.biomaterials.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  103. Chu CL, Lin PH, Dong YS, Guo DY (2002) Influences of citric acid as a chelating reagent on the characteristics of nanophase hydroxyapatite powders fabricated by a sol–gel method. J Mater Sci Lett 21:1793–1795. https://doi.org/10.1023/a:1020997510289

    Article  CAS  Google Scholar 

  104. Bezzi G, Celotti G, Landi E et al (2003) A novel sol–gel technique for hydroxyapatite preparation. Mater Chem Phys 78:816–824. https://doi.org/10.1016/s0254-0584(02)00392-9

    Article  CAS  Google Scholar 

  105. Liu Q, De Wijin J, Van Blitterswijk CA (1997) Nano-apatite/polymer composites: mechanical and physicochemical characteristics. Biomaterials 18:1263–1270. https://doi.org/10.1016/s0142-9612(97)00069-0

    Article  CAS  PubMed  Google Scholar 

  106. Lett JA, Ravichandran K, Sundareswari M (2015) The study on the synthetic methodologies for manoeuvring the morphology crystallinity and particle size of hydroxyapatite. J Chem Pharm Res 7:231–239. ISSN: 0975-7384

  107. Bouyer E, Gitzhofer F, Boulos MI (2000) Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med 11:523–531. https://doi.org/10.1023/a:1008918110156

    Article  CAS  PubMed  Google Scholar 

  108. Hench LL, Wilson J (1993) An introduction to bioceramics. Advanced series in ceramics, vol 1. World Scientific Publishing, p 125. ISBN: 978-981-4317-35-1

  109. Osaka A, Miura Y, Takeuchi K, Asada M, Takahashi K (1991) Calcium apatite prepared from calcium hydroxide and orthophosphoric acid. J Mater Sci Mater Med. https://doi.org/10.1007/bf00701687

    Article  Google Scholar 

  110. Verwilghen C, Chkir M, Rio S, Nzihou A, Sharrock P, Depelsenaire G (2009) Convenient conversion of calcium carbonate to hydroxyapatite at ambient pressure. Mater Sci Eng C 29:771–773. https://doi.org/10.1016/j.msec.2008.07.007

    Article  CAS  Google Scholar 

  111. Bonel G, Heughebaert JC, Heughebaert M et al (1988) Apatitic calcium orthophosphates and related compounds for biomaterials preparation. Bioceramics 523:115–130. https://doi.org/10.1111/j.1749-6632.1988.tb38506.x

    Article  CAS  Google Scholar 

  112. Hayek E, Newesely H (1963) Pentacalcium monohydroxyorthophosphate (hydroxylapatite). Inorg Synth 7:63–65. https://doi.org/10.1002/9780470132388.ch17

    Article  CAS  Google Scholar 

  113. Hayek E, Stadlmann W (1955) Preparation of pure hydroxyapatite for adsorption uses. Angew Chem 67:327

    Article  CAS  Google Scholar 

  114. Liu C, Huang Y, Shen W, Cui J (2001) Kinetics of hydroxyapatite precipitation at pH 10–11. Biomaterials 22:301–306. https://doi.org/10.1016/s0142-9612(00)00166-6

    Article  CAS  PubMed  Google Scholar 

  115. Raynaud S, Champion E, Bernache-Assollant D, Thomas P (2002) Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23:1065–1072. https://doi.org/10.1016/s0142-9612(01)00218-6

    Article  CAS  PubMed  Google Scholar 

  116. Rodriguez-Lorenzo LM, Vallet-Regi M, Ferreira JMF (2001) Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials 22:583–588. https://doi.org/10.1016/s0142-9612(00)00218-0

    Article  CAS  PubMed  Google Scholar 

  117. Arends J, Christoffersen J, Christoffersen MR, Eckert H, Fowler BO, Heughebaert JC, Nan-collas GH, Yesinowski JP, Zawacki SJ (1987) A calcium hydroxyapatite precipitated from an aqueous solution: an international multimethod analysis. J Cryst Growth 84:515–532. https://doi.org/10.1016/0022-0248(87)90284-3

    Article  CAS  Google Scholar 

  118. Kong LB, Ma J, Boey F (2002) Nanosized hydroxyapatite powders derived from co-precipitation process. J Mater Sci 37:1131–1134. https://doi.org/10.1023/A:101435503125

    Article  CAS  Google Scholar 

  119. Islam M, Mishra CP, Patel R (2010) Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. J Environ Manage 91:1883–1891. https://doi.org/10.1016/j.jenvman.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  120. Salimi MN, Bridson RH, Grover LM, Leeke GA (2012) Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technol 218:109–118. https://doi.org/10.1016/j.powtec.201.11.049

    Article  CAS  Google Scholar 

  121. Wang PP, Li CH, Gong HY, Jiang XR, Li KX (2010) Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol 203:315–321. https://doi.org/10.1016/j.powtec.2010.05.023

    Article  CAS  Google Scholar 

  122. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612. https://doi.org/10.1002/jbm.10280

    Article  CAS  PubMed  Google Scholar 

  123. Zanotto A, Saladino ML, Martino DC, Caponetti E (2012) Influence of temperature on calcium hydroxyapatite nanopowders. Adv Nanopart 1:21–28. https://doi.org/10.4236/anp.2012.13004p

    Article  Google Scholar 

  124. Manoj M, Subbiah R, Mangalaraj D, Ponpandian N, Viswanathan C, Park K (2015) Influence of growth parameters on the formation of hydroxyapatite (HAp) nanostructures and their cell viability studies. Nanobiomedicine 2:2. https://doi.org/10.5772/60116

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pang YX, Bao X (2003) Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc 23:1697–1704. https://doi.org/10.1016/s0955-2219(02)00413-2

    Article  CAS  Google Scholar 

  126. Saeri MR, Afshar A, Ghorbani M, Ehsani N, Sorrell CC (2003) The wet precipitation process of hydroxyapatite. Mater Lett 57:4064–4069. https://doi.org/10.1016/s0167-577x(03)00266-0

    Article  CAS  Google Scholar 

  127. Angelescu N, Ungureanu DN, Anghelina FV (2011) Synthesis and characterization of hydroxyapatite obtained in different experimental conditions. Sci Bull Valahia Univ Mater Mech 6:15–18

    Google Scholar 

  128. Zhang Y, Zhu J, Xu Z, Zhang X, Ren Y (2014) Effects of synthetic conditions on morphology of hydroxyapatite by chemical precipitation method. Sci Afr J Sci Issues Res Essays 2:307–313

    Google Scholar 

  129. Zhang Y, Lu J (2007) A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature. J Nanopart Res 9:589–594. https://doi.org/10.1007/s11051-006-9177-3

    Article  CAS  Google Scholar 

  130. Pretto M, Costa AL, Landi E, Tampieri A, Galassi C (2003) Dispersing behavior of hydroxyapatite powders produced by wet-chemical synthesis. J Am Ceram Soc 86:1534–1539. https://doi.org/10.1111/j.1151-2916.2003.tb03510.x

    Article  CAS  Google Scholar 

  131. Liu Y, Hou D, Wang G (2004) A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater Chem Phys 86:69–73. https://doi.org/10.1016/j.matchemphys.2004.02.009

    Article  CAS  Google Scholar 

  132. Wu Y, Bose S (2005) Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir 21:3232–3234. https://doi.org/10.1021/la046754z

    Article  CAS  PubMed  Google Scholar 

  133. Yao J, Tjandra W, Chen YZ, Tam KC, Ma J, Soh B (2003) Hydroxyapatite nanostructure material derived using cationic surfactant as a template. J Mater Chem 13:3053–3057. https://doi.org/10.1039/b308801d

    Article  CAS  Google Scholar 

  134. Salarian M, Solati-Hashjin M, Shafiei SS, Goudarzi A, Salarian R, Nemati A (2009) Surfactant-assisted synthesis and characterization of hydroxyapatite nanorods under hydrothermal conditions. Mater Sci Pol 27:961–972

    CAS  Google Scholar 

  135. Shanthi PMSL, Ashok M, Balasubramanian T, Riyasdeen A, Akbarsha MA (2009) Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant. Mater Lett 63:2123–2125. https://doi.org/10.1016/j.matlet.2009.07.008

    Article  CAS  Google Scholar 

  136. Coelho JM, Moreira JA, Almeida A, Monteiro FJ (2010) Synthesis and characterization of HAp nanorods from a cationic surfactant template method. J Mater Sci Mater Med 21:2543–2549. https://doi.org/10.1007/s0856-010-4122-5

    Article  CAS  PubMed  Google Scholar 

  137. Tari NE, Motlagh MMK, Sohrabi B (2011) Synthesis of hydroxyapatite particles in cationic mixed surfactants template. Mater Chem Phys 131:132–135. https://doi.org/10.1016/j.matchemphys.2011.07.078

    Article  CAS  Google Scholar 

  138. Ma T, Xia Z, Liao L (2011) Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route. Appl Surf Sci 257:4384–4388. https://doi.org/10.1016/j.apsusc.2010.12.067

    Article  CAS  Google Scholar 

  139. Kolodziejczak-Radzimska A, Samuel M, Paukszta D, Piasecki A, Jesionowski T (2014) Synthesis of hydroxyapatite in the presence of anionic sufractant. Physicochem Probl Miner Process 50:225–236. https://doi.org/10.5277/ppmp140119

    Article  CAS  Google Scholar 

  140. Alobeedallaha H, Ellis JL, Rohanizadehc R, Costera H, Dehghania F (2011) Preparation of nanostructured hydroxyapatite in organic solvents for clinical applications. Trends Biomater Artif Organs 25(1):12–19. http://www.sbaoi.org

    Google Scholar 

  141. Okuyama K, Noguchi K, Hanafusa Y, Osawa K, Ogawa K (1999) Structural study of anhydrous tendon chitosan obtained via chitosan/acetic complex. Int J Biol Macromol 26:285–293. https://doi.org/10.1016/s0141-8130(99)00095-1

    Article  CAS  PubMed  Google Scholar 

  142. Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T (1984) New polymorph of chitosan. Macromolecules 17:973–975. https://doi.org/10.1021/ma00134a076

    Article  CAS  Google Scholar 

  143. Lin YL, Khor E, Ling CE (1999) Effects of dry heat and saturated steam on the physical properties of chitosan. J Biomed Mater Res 48:111–116. https://doi.org/10.1002/(sici)1097-4636(1999)48:2%3c111:aid-jbm3%3e3.0.co;2-w

    Article  Google Scholar 

  144. Kashiwazaki H, Yamaguchi K, Harada N, Akazawa T, Murata M, Iizuka T, Ikoma T, Tanaka J, Inoue N (2010) In vivo evaluation of a novel chitosan/HAp composite biomaterial as a carrier of rhBMP-2. J Hard Tissue Biol Netw Assoc 19:181–186. https://doi.org/10.2485/jhtb.19.181

    Article  CAS  Google Scholar 

  145. Yamaguchi I, Itoh S, Suzuki M, Osaka A, Tanaka J (2003) The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration. Biomaterials 24:3285–3292. https://doi.org/10.1016/s0142-9612(03)00163-7

    Article  CAS  PubMed  Google Scholar 

  146. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Size controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26:5414–5426. https://doi.org/10.1016/j.biomaterials.2005.01.051

    Article  CAS  PubMed  Google Scholar 

  147. Chandrasekar A, Sagadevan S, Dakshnamoorthy A (2013) Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int J Phys Sci 8:1639–1645. https://doi.org/10.5897/ijps2013.3990

    Article  Google Scholar 

  148. Chen JD, Nan KH, Yin SH, Wang YJ, Wu T, Zhang QQ (2010) Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloids Surf B 81:640–647. https://doi.org/10.1016/j.colsurfb.2010.08.017

    Article  CAS  Google Scholar 

  149. Kim BS, Yong SC, Sin YW, Ryu KH, Lee J, You HK (2013) Growth and osteogenic differentiation of alveolar human bone marrow derived mesenchymal stem cells on chitosan-hydroxyapatite composite fabric. J Biomed Mater Res Part A 101:1550–1558. https://doi.org/10.1002/jbm.a.34456

    Article  CAS  Google Scholar 

  150. Davidenko N, Carrodeguas RG, Peniche C, Solis Y, Cameron RE (2010) Chitosan-apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomater 6:466–476. https://doi.org/10.1016/j.actbio.2009.07.029

    Article  CAS  PubMed  Google Scholar 

  151. Harding IS, Rachid N, Hing KA (2005) Surface charge and the effect of excess calcium ions on the hydroxyapatite surface. Biomaterials 26:6818–6826. https://doi.org/10.1016/j.biomaterials.2005.04.060

    Article  CAS  PubMed  Google Scholar 

  152. Zhu P, Masuda Y, Kumoto K (2004) The effect of surface charge on hydroxyapatite nucleation. Biomaterials 25:3915–3921. https://doi.org/10.1016/j.biomaterials.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  153. Brasse G, Restoin C, Auguste JL, Roy P, Leparmentier S, Blondy JM (2009) Conception, elaboration and characterization of silica-zirconia based nanostructured optical fiber obtained by the sol–gel process. Wseas Trans Adv Eng Educ 6:45–54. ISSN: 1790-1979 45

  154. Mavis B, Taş AC (2000) Dip-coating of calcium hydroxyapatite on titanium alloy Ti–6Al–4V substrates. J Am Ceram Soc 83:989–991. https://doi.org/10.1111/j.1151-2916.2000.tb01314.x

    Article  CAS  Google Scholar 

  155. Huang YY, Chou KS (2003) Studies on the spin coating process of silica films. Ceram Int 29:485–493. https://doi.org/10.1016/s0272-8842(02)00191-8

    Article  CAS  Google Scholar 

  156. Liu DM, Troczynski T, Tseng WJ (2001) Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials 22:1721–1730. https://doi.org/10.1016/s0142-9612(00)00332-x

    Article  CAS  PubMed  Google Scholar 

  157. Livage J, Barboux P, Vandenborre MT, Schmutz C, Taulelle F (1992) Sol–gel synthesis of phosphates. J Non Cryst Solids 147–148:18–23. https://doi.org/10.1016/s0022-3093(05)80586-1

    Article  Google Scholar 

  158. Wang J, Shaw LL (2009) Synthesis of high purity hydroxyapatite nanopowder via sol–gel combustion process. J Mater Sci Mater Med 20:1223–1227. https://doi.org/10.1007/s10856-008-3685-x

    Article  CAS  PubMed  Google Scholar 

  159. Kim BH, Jeong JH, Jeon YS, Hwang KS (2007) Hydroxyapatite layers prepared by sol gel assisted electrostatic spray deposition. Ceram Int 33:119–122. https://doi.org/10.1016/j.ceramint.2005.08.002

    Article  CAS  Google Scholar 

  160. Padmanabhan SK, Balakrishnan A, Chu MC, Lee YJ, Kim TN, Cho SJ (2009) Sol–gel synthesis and characterization of hydroxyapatite nanorods. Particuology 7:466–470. https://doi.org/10.1016/j.partic.2009.06.008

    Article  CAS  Google Scholar 

  161. Yang L, Ning X, Chen K, Zhou H (2007) Preparation and properties of hydroxyapatite filters for microbial filtration. Ceram Int 33:483–489. https://doi.org/10.1016/j.ceramint.2005.10.014

    Article  CAS  Google Scholar 

  162. Ruban Kumar A, Kalainathan S (2010) Sol–gel synthesis of nanostructured hydroxyapatite powder in presence of polyethylene glycol. Phys B Phys Condens Matter 405:2799–2802. https://doi.org/10.1016/j.physb.2010.03.067

    Article  CAS  Google Scholar 

  163. Hsieh MF, Perng LH, Chin TS, Perng HG (2001) Phase purity of sol gel derived hydroxyapatite ceramic. Biomaterials 22:2601–2607. https://doi.org/10.1016/s0142-9612(00)00448-8

    Article  CAS  PubMed  Google Scholar 

  164. Palanivelu R, RubanKumar A (2013) Synthesis and spectroscopic characterization of hydroxyapatite by sol–gel method. Int J ChemTech Res 5:2965–2969. ISSN: 0974-4290

  165. Liu DM, Troczynski T, Tseng WJ (2002) Aging effect on the phase evolution of water-based sol–gel hydroxyapatite. Biomaterials 23:1227–1236. https://doi.org/10.1016/s0142-9612(01)00242-3

    Article  CAS  PubMed  Google Scholar 

  166. Chai CS, Gross KA, Ben-Nissan B (1998) Critical ageing of hydroxyapatite sol–gel solutions. Biomaterials 19:2291–2296. https://doi.org/10.1016/s0142-9612(98)90138-7 (PMID: 9884042)

    Article  CAS  PubMed  Google Scholar 

  167. Bakan F, Laçin O, Sarac H (2013) A Novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol 233:295–302. https://doi.org/10.1016/j.powtec.2012.08.030

    Article  CAS  Google Scholar 

  168. Rajkumar M, Meenakshi Sundaram N, Rajendran V (2011) Preparation of size controlled, stoichiometric and bioresorbable hydroxyapatite nanorod by varying initial pH, Ca/P ratio and sintering temperature. Dig J Nanomater Biostruct 6(1):169–179. https://www.researchgate.net/publication/259469281

    Google Scholar 

  169. Jamarun N, Sari TP, Drajat S, Azharman Z, Asril A (2015) Effect of pH variation on hydroxyapatite synthesis through sol–gel method. Res J Pharm Biol Chem Sci 6:1065–1069. ISSN: 0975-8585

  170. Jamarun N, Miftahurrahmi, Septiani U (2016) Synthesis of hydroxyapatite from Halaban limestone by sol–gel method. Res J Biol Chem Sci 7:2956–2961. ISSN: 0975-8585

  171. Saranya K, Kowshik M, Ramanan Sutapa Roy (2011) Synthesis of hydroxyapatite nanopowders by sol–gel emulsion technique. Bull Mater Sci 34:1749–1753. https://doi.org/10.1007/s12034-011-0386-8

    Article  CAS  Google Scholar 

  172. Sanosh KP, Chu MC, Balakrishnan A, Kim TN, Cho SJ (2009) Preparation and characterization of nanohydroxyapatite powder using sol gel technique. Bull Mater. https://doi.org/10.1007/s12034-009-0069-x

    Article  Google Scholar 

  173. Anuar A, Salimi MNA, Daud MZM, Yee YF (2013) Characterizations of hydroxyapatite (HAp) nanoparticles produced by sol–gel method. Adv Environ Biol 7:3587–3590. ISSN: 1995-0756

  174. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029. https://doi.org/10.1038/boneres.2015.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432. https://doi.org/10.1038/nature08601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kavitha M, Subramanian R, Vinoth S, Neelamegan E (2015) Optimization of process parameters for solution combustion synthesis of strontium substituted hydroxyapatite nanocrystals using design of experiments approach. Powder Technol 271:167–181. https://doi.org/10.1016/j.powtec.2014.10.046

    Article  CAS  Google Scholar 

  177. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781. https://doi.org/10.1016/j.actbio.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  178. Natarajan UV, Rajeswari S (2008) Influence of calcium precursors on the morphology and crystallinity of sol–gel-derived hydroxyapatite nanoparticles. J Cryst Growth 310:4601–4611. https://doi.org/10.1016/j.jcrysgro.2008.07.118

    Article  CAS  Google Scholar 

  179. Loo SCJ, Siew YE, Ho S, Boey FYC, Ma J (2008) Synthesis and hydrothermal treatment of nanostructured hydroxyapatite of controllable sizes. J Mater Sci Mater Med 19:1389–1397. https://doi.org/10.1007/s10856-007-3261-9

    Article  CAS  PubMed  Google Scholar 

  180. Yoshimura M, Suda H, Okamoto K (1994) Hydrothermal synthesis of biocompatible whiskers. J Mater Sci 29:3399–3402. https://doi.org/10.1007/bf00352039

    Article  CAS  Google Scholar 

  181. Felício-Fernandes G, Laranjeira Mauro CM (2000) Calcium phosphate biomaterials from marine algae, hydrothermal synthesis and characterization, Química. Nova 23:1678–7064. https://doi.org/10.1590/s0100-40422000000400002

    Article  Google Scholar 

  182. Roeder RK, Converse GL, Kane RJ, Yue W (2008) Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 60:38–45. https://doi.org/10.1007/s11837-008-0030-2

    Article  CAS  Google Scholar 

  183. Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26:471–482. https://doi.org/10.1016/j.dental.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  184. Bayraktar D, Tas AC (1999) Chemical preparation of carbonated calcium hydroxyapatite powders at 37 °C in urea-containing synthetic body fluids. J Eur Ceram Soc 19:2573–2579. https://doi.org/10.1016/s0955-2219(99)00132-6

    Article  CAS  Google Scholar 

  185. Zhang X, Vecchio KS (2007) Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth 308:133–140. https://doi.org/10.1016/j.jcrysro.2007.07.059

    Article  CAS  Google Scholar 

  186. Ashok M, Kalkura SN, Sundaram NM, Arivuoli D (2007) Growth and characterization of hydroxyapatite crystals by hydrothermal method. J Mater Sci Mater Med 18:895–898. https://doi.org/10.1007/s10856-006-0070-5

    Article  CAS  PubMed  Google Scholar 

  187. Yoshimura M (1998) Importance of soft Solution processing for advanced inorganic materials. J Mater Res 13:796–802. https://doi.org/10.1557/jmr.1998.0101

    Article  CAS  Google Scholar 

  188. Chaopanich P, Siriphannon P, Sodium (2016) polystyrene sulfonate template assisted hydrothermal synthesis of hydroxyapatite nanorods. Indian J Chem 55A:1084–1089. ISSN: 0975-0975

  189. Zhang G, Chen J, Yang S, Yu Q, Wang Z, Zhang Q (2011) Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Mater Lett 65:572–574. https://doi.org/10.1016/j.matlet.2010.10.078

    Article  CAS  Google Scholar 

  190. Tsiourvas D, Tsetsekou A, Kammenou MI, Boukos N (2011) Controlling the formation of hydroxyapatite nanorods with dendrimers. J Am Ceram Soc 94:2023–2029. https://doi.org/10.1111/j.1551-2916.2010.04342.x

    Article  CAS  Google Scholar 

  191. Lemos AF, Rocha JHG, Quaresma SSF, Kannan S, Oktar FN, Agathopoulos S, Ferreira JMF (2006) Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc 26:3639–3646. https://doi.org/10.1016/j.jeurceramsoc.2005.12.011

    Article  CAS  Google Scholar 

  192. Yoshimura M, Suyaridworakun P, Koh F, Fujiwara T, Pongkau D, Ahniyaz A (2004) Hydrothermal conversion of calcite crystals to hydroxyapatite. Mater Sci Eng C 24:521–525. https://doi.org/10.1016/j.msec.2004.01.005

    Article  CAS  Google Scholar 

  193. Santos C, Almeida MM, Costa ME (2015) Morphological evolution of hydroxyapatite particles in the presence of different citrate: calcium ratios. Cryst Growth Des 15:4417–4426. https://doi.org/10.1021/acs.cgd.5b00737

    Article  CAS  Google Scholar 

  194. Zhu R, Yu R, Yao J, Wang D, Ke J (2008) Morphology control of hydroxyapatite through hydrothermal process. J Alloys Compd 457:555–559. https://doi.org/10.1016/j.jallcom.2007.03.081

    Article  CAS  Google Scholar 

  195. Yang Y, Wu Q, Wang M, Long J, Mao Zhou, Chen X (2014) Hydrothermal synthesis of hydroxyapatite with different morphologies: influence of supersaturation of the reaction system. Cryst Growth Des 14:4864–4871. https://doi.org/10.1021/cg501063j

    Article  CAS  Google Scholar 

  196. Sadat-Shojai M, Atai M, Nodehi A (2011) A design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatite nanoparticles. J Braz Chem Soc 22:571–582. https://doi.org/10.1590/s0103-50532011000300023

    Article  CAS  Google Scholar 

  197. Goudarzi A, Solati-Hashjin M, Moztarzadeh F (2007) Surfactant assisted synthesis of hydroxyapatite nanorods by aqueous precipitation and hydrothermal post-treatment. In: Heinrich JG, Aneziris C (eds) Proceedings of the 10th ECerS conference, Göller Verlag, Baden-Baden. ISBN: 3-87264-022-4, 964-968

  198. Chen YQ, Xing XF, Gao WM (2015) Synthesis of spherical nano-hydroxyapatite by hydrothermal method with l-lysine template. Key Eng Mater 633:17–20. https://doi.org/10.4028/www.scientific.net/KEM.633.17

    Article  CAS  Google Scholar 

  199. Jin X, Chen X, Cheng Y, Wang L, Hu B, Tan J (2015) Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. J Colloid Interface Sci 450:151–158. https://doi.org/10.1016/j.jcis.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  200. Wilson OCJR, Hull JR (2008) Surface modification of nanophase hydroxyapatite with chitosan. Mater Sci Eng C 28:434–437. https://doi.org/10.1016/j.msec.2007.04.005

    Article  CAS  Google Scholar 

  201. Yuan H, Chen N, Lü X, Zheng B (2008) Experimental study of natural hydroxyapatite/chitosan composite on reconstructing bone defects. J Nanjing Med Univ 22:372–375. https://doi.org/10.1016/s1007-4376(09)600009-5

    Article  CAS  Google Scholar 

  202. Danilchenko SN, Kalinkevich OV, Pogorelov MV (2009) Chitosan–hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 9:119–126. https://doi.org/10.4024/22da09a.jbpc.09.03

    Article  CAS  Google Scholar 

  203. Li LH, Zhao MY, Ding S, Zhou CR (2011) Rapid biomimetic mineralization of chitosan scaffolds with a precursor sacrificed method in ethanol/water mixed solution, eXPRESS. Polym Lett 5:545–554. https://doi.org/10.3144/expresspolymlett.2011.53

    Article  CAS  Google Scholar 

  204. Zhang Y, Zhang M (2001) Synthesis and characterization of macro-porous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 55:304–312. https://doi.org/10.1002/1097-4636(20010605)55:3%3c304:AID-JBM1018%3e3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  205. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel Hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137. https://doi.org/10.1016/j.biomaterials.2006.07.034

    Article  CAS  PubMed  Google Scholar 

  206. Zhao F, Grayson WL, Ma T, Bunnell B, Lu WW (2006) Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 27:1859–1867. https://doi.org/10.1016/j.biomaterials.2005.09.031

    Article  CAS  PubMed  Google Scholar 

  207. Li J, Chen YP, Yin Y, Yao F, Yao K (2007) Modulation of nano-hydroxyapatite size via formation on chitosan/gelatin network film in situ. Biomaterials 28:781–790. https://doi.org/10.1016/j.biomaterials.2006.09.042

    Article  CAS  PubMed  Google Scholar 

  208. Li Wang, Li C (2007) Preparation and physicochemical properties of a novel hydroxyapatite/chitosan-silk fibroin composite. Carbohyd Polym 68:740–745. https://doi.org/10.1016/j.carbpol.2006.08.010

    Article  CAS  Google Scholar 

  209. Jiang LY, Li YB, Zhang L, Wang XJ (2009) Preparation and characterization of a novel composite containing carboxymethyl cellulose used for bone repair. Mater Sci Eng C 29:193–198. https://doi.org/10.1016/j.mec.2008.06.009

    Article  CAS  Google Scholar 

  210. Madhumathi K, Binulal NS, Nagahama H, Tamura H, Shalumon KT, Selvamurugan N, Nair SV, Jayakumar R (2009) Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44:1–5. https://doi.org/10.1016/j.ijbiomac.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  211. Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F, Wang V, Yao K (2008) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan/gelatin network films. Mater Sci Eng C 29:1207–1215. https://doi.org/10.1016/j.msec.2008.09.038

    Article  CAS  Google Scholar 

  212. Aimoli CG, Beppu MM (2006) Precipitation of calcium phosphate and calcium carbonate induced over chitosan membranes: a quick method to evaluate the influence of polymeric matrices in heterogeneous calcification. Colloids Surf B Biointerfaces 53:15–22. https://doi.org/10.1016/j.colsurfb.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  213. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohyd Polym 76:167–182. https://doi.org/10.1016/j.carbpol.2008.11.002

    Article  CAS  Google Scholar 

  214. Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 42:3171–3179. https://doi.org/10.1016/j.eurpolymj.2006.08.009

    Article  CAS  Google Scholar 

  215. Leonor IB, Baran ET, Kawashita M, Reis RL, Kokubo T, Nakamura T (2008) Growth of a bone-like apatite on chitosan microparticles after a calcium silicate treatment. Acta Biomater 4:1349–1359. https://doi.org/10.1016/j.actbio.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  216. Manjubala I, Scheler S, Bossert J, Jandt KD (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater 2:75–84. https://doi.org/10.1016/j.actbio.2005.09.007

    Article  CAS  PubMed  Google Scholar 

  217. Simkiss K, Wilbur KM (1989) Biomineralization. Cell biology and mineral deposition. Academic Press, San Diego, p 337. ISBN 012643807

  218. Li L, Zhao M, Ding S, Zhou C (2011) Single-step mineralization of woodpile chitosan scaffolds with improved cell compatibility. J Biomed Mater Res Part B Appl Biomater 98B(2):230–237. https://doi.org/10.1002/jbm.b.31811

    Article  CAS  Google Scholar 

  219. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J (2001) Preparation and microstructure analysis of chitosan-hydroxyapatite nanocomposites. J Biomed Mater Res 55:20–27. https://doi.org/10.1002/1097-4636(200104)55:1%3c20:aid-jbm30%3e3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  220. Chesnutt BM, Viano AM, Yuan Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD (2009) Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res Part A 88:491–502. https://doi.org/10.1002/jbm.a.31878

    Article  CAS  Google Scholar 

  221. Miyazaki S, Ishii K, Nadai T (1981) The use of chitin and chitosan as drug carriers. Chem Pharm Bull (Tokyo) 29:3067–3069. https://doi.org/10.1248/cpb.29.3067

    Article  CAS  Google Scholar 

  222. Barabás R, Czikó M, Dékány I, Bizo L, Bogya ES (2013) Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem Pap 67:1414–1423. https://doi.org/10.2478/s11696-013-0409-6

    Article  CAS  Google Scholar 

  223. Yang QW, Wang JX, Guo F, Chen JF (2010) Preparation of hydroxyapatite nanoparticles by using high-gravity reactive precipitation combined with hydrothermal method. Ind Eng Chem Res 49:9857–9863. https://doi.org/10.1021/ie1012757

    Article  CAS  Google Scholar 

  224. Nikpour MR, Rabiee SM, Jahanshahi M (2012) Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Compos B 43:1881–1886. https://doi.org/10.1016/j.compositesb.2012.01.056

    Article  CAS  Google Scholar 

  225. Shavandi A, Bekhit AD, Sun Z, Ali A, Gould M (2015) A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater Sci Eng C 55:337–383. https://doi.org/10.1016/j.msec.2015.05.029

    Article  CAS  Google Scholar 

  226. Reys LL, Silva SS, Oliveira JM, Caridade SG, Mano JF, Silva TH (2013) Revealing the potential of squid chitosan-based structures for biomedical applications. Biomed Mater 8:1–11. https://doi.org/10.1088/1748-6041/8/4/045002

    Article  CAS  Google Scholar 

  227. Kim HW, Kim HE, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230. https://doi.org/10.1016/j.biomaterials.2005.01.047

    Article  CAS  PubMed  Google Scholar 

  228. Mohamed KR, Mostafa AA (2008) Preparation and bioactivity evaluation of hydroxyapatite titania/chitosan-gelatin polymeric biocomposites. Mater Sci Eng C 28:1087–1099. https://doi.org/10.1016/j.msec.2007.04.040

    Article  CAS  Google Scholar 

  229. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757. https://doi.org/10.1016/j.biomaterials.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  230. Cai X, Tong H, Shen X, Chen W, Yan J, Hu J (2009) Preparation and characterization of homogeneous chitosan polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater 5:2693–2703. https://doi.org/10.1016/j.actbio.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  231. Rodrigues CV, Serricella P, Linhares AB, Guerdes RM, Borojevic R, Rossi MA, Duarte MEL, Farina M (2003) Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24:4987–4997. https://doi.org/10.1016/s0142-9612(03)00410-1

    Article  CAS  PubMed  Google Scholar 

  232. Yu CC, Chang JJ, Lee YH, Lin YC, Wu MH, Yang MC, Chien CT (2013) Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Mater Lett 93:133–136. https://doi.org/10.1016/j.matlet.2012.11.040

    Article  CAS  Google Scholar 

  233. Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49:188–193. https://doi.org/10.1016/j.ijbiomac.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  234. Venkatesan J, Qian ZJ, Ryu B, Kumar NA, Kim SK (2011) Preparation and characterization of carbon nanotube grafted chitosan natural hydroxyapatite composite for bone tissue engineering. Carbohyd Polym 83:569–577. https://doi.org/10.1016/j.carbpol.2010.08.019

    Article  CAS  Google Scholar 

  235. Jiang L, Li Y, Wang X, Li Zhang, Wen J, Gong M (2008) Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydr Polym 74:680–684. https://doi.org/10.1016/j.carbpol.2008.04.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalila Boudemagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudemagh, D., Venturini, P., Fleutot, S. et al. Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status. Polym. Bull. 76, 2621–2653 (2019). https://doi.org/10.1007/s00289-018-2483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2483-y

Keywords

Navigation