Skip to main content

Advertisement

Log in

Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes

  • Overview
  • Biological Materials Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA)-reinforced polymer biocomposites offer a robust system to engineer synthetic bone substitutes with tailored mechanical, biological, and surgical functions. The basic design rationale has been to reinforce a tough, biocompatible polymer matrix with a bioactive HA filler. A large number of studies have investigated modifications to the biocomposite structure and composition, aimed at improving the mechanical properties, often through modified or novel processing methods. In this article, the effects of the polymer composition and molecular orientation; the HA/polymer interface; and the HA-reinforcement content, morphology, preferred orientation, and size are reviewed with respect to mechanical properties, drawing frequent comparisons between various HA-reinforced polymer composites and bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bonfield et al., “Hydroxyapatite Reinforced Polyethylene—A Mechanically Compatible Implant Material for Bone Replacement,” Biomaterials, 2 (1981), pp. 185–186.

    Article  CAS  Google Scholar 

  2. W. Bonfield, “Composites for Bone Replacement,” J. Biomed. Eng., 10(6) (1988), pp. 522–526.

    Article  CAS  Google Scholar 

  3. M. Wang, D. Porter, and W. Bonfield, “Processing, Characterisation, and Evaluation of Hydroxyapatite Reinforced Polyethylene Composites,” Brit. Ceram. Trans., 93(3) (1994), pp. 91–95.

    CAS  Google Scholar 

  4. M. Wang, R. Joseph, and W. Bonfield, “Hydroxyapatite-Polyethylene Composites for Bone Substitution: Effects of Ceramic Particle Size and Morphology,” Biomaterials, 19(24) (1998), pp. 2357–2366.

    Article  CAS  Google Scholar 

  5. P.T.T. That, K.E. Tanner, and W. Bonfield, “Fatigue Characterization of a Hydroxyapatite-Reinforced Polyethylene Composite. I. Uniaxial Fatigue,” J. Biomed. Mater. Res., 51(3) (2000), pp. 453–460.

    Article  CAS  Google Scholar 

  6. L.D. Silvio, M.J. Dalby, and W. Bonfield, “Osteoblast Behaviour on HAP/PE Composite Surfaces with Different HA Volumes,” Biomaterials, 23 (2002), pp. 101–107.

    Article  Google Scholar 

  7. J-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical Properties and the Hierarchical Structure of Bone,” Med. Eng. Phys., 20 (1998), pp. 92–102.

    Article  CAS  Google Scholar 

  8. S. Weiner and H.D. Wagner, “The Material Bone: Structure-Mechanical Function Relations,” Annu. Rev. Mater. Sci., 28 (1998), pp. 271–298.

    Article  CAS  Google Scholar 

  9. H.-R. Wenk and F. Heidelbach, “Crystal Alignment of Carbonated Apatite in Bone and Calcified Tendon: Results from Quantitative Texture Analysis,” Bone, 24(4) (1999), pp. 361–369.

    Article  CAS  Google Scholar 

  10. R.B. Ashman et al., “A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone,” J. Biomechanics, 17(5) (1984), pp. 349–361.

    Article  CAS  Google Scholar 

  11. K. Hasegawa, C.H. Turner, and D.B. Burr, “Contribution of Collagen and Mineral to the Elastic Anisotropy of Bone,” Calcif. Tissue Int., 55 (1994), pp. 381–386.

    Article  CAS  Google Scholar 

  12. A.A. Espinoza Orías et al., “Anatomic Variation in the Elastic Anisotropy of Cortical Bone Tissue in the Human Femur,” J. Mech. Behav. Biomed. Mater., submitted (2007).

  13. R.B. Martin, D.B. Burr, and N.A. Sharkey, Skeletal Tissue Mechanics (New York: Springer, 1998).

    Google Scholar 

  14. X.E. Guo, “Mechanical Properties of Cortical Bone and Cancellous Bone Tissue,” Bone Mechanics Handbook, ed. S.C. Cowin (Boca Raton, FL: CRC Press, 2001), pp. 10.1–10.23.

    Google Scholar 

  15. D.T. Reilly and A.H. Burstein, “The Elastic and Ultimate Properties of Compact Bone Tissue,” J. Biomechanics, 8 (1975), pp. 393–405.

    Article  CAS  Google Scholar 

  16. R.K. Nalla et al., “Fracture in Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms,” J. Biomechanics, 38 (2005), pp. 1517–1525.

    Article  CAS  Google Scholar 

  17. T.M. Keaveny et al., “Biomechanics of Trabecular Bone,” Annu. Rev. Biomed. Eng., 3 (2001), pp. 307–333.

    Article  CAS  Google Scholar 

  18. C.H. Turner et al., “The Elastic Properties of Trabecular and Cortical Bone Tissues are Similar: Results from Two Microscopic Measurement Techniques.” J. Biomechanics, 32(4) (1999), pp. 437–441.

    Article  CAS  Google Scholar 

  19. R.B. Cook and P. Zioupos, “The Fracture Toughness of Cancellous Bone,” J. Biomechanics, 39(s1) (2006), p. 17.

    Article  Google Scholar 

  20. M.F. Ashby, Materials Selection in Mechanical Design (Oxford, U.K.: Pergamon Press, 1992).

    Google Scholar 

  21. M.F. Ashby et al., “The Mechanical Properties of Natural Materials. I. Material Property Charts,” Proc. R. Soc. Lond. A, 450 (1995), pp. 123–140.

    Google Scholar 

  22. J.B. Park, Biomaterials: An Introduction (New York: Plenum Press, 1979).

    Google Scholar 

  23. L.L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc., 74(7) (1991), pp. 1487–1510.

    Article  CAS  Google Scholar 

  24. L.L. Hench and J. Wilson, editors, An Introduction to Bioceramics (Singapore: World Scientific, 1993).

    Google Scholar 

  25. E.F. Morgan et al., “Mechanical Properties of Carbonated Apatite Bone Mineral Substitute: Strength, Fracture and Fatigue Behavior,” J. Mater. Sci. Mater. Med., 8 (1997), pp. 559–570.

    Article  CAS  Google Scholar 

  26. J-N. Chu and J.M. Schultz, “The Influence of Microstructure on the Failure Behavior of PEEK,” J. Mater. Sci., 24 (1989), pp. 4538–4544.

    Article  CAS  Google Scholar 

  27. Ph. Beguelin and H.H. Kausch, “The Effect of the Loading Rate on the Fracture Toughness of Poly(methyl methacrylate), Polyacetal, Polyetheretheketone and Modified PVC,” J. Mater. Sci., 29 (1994), pp. 91–98.

    Article  CAS  Google Scholar 

  28. G. Lewis, “Properties of Acrylic Bone Cement: State of the Art Review,” J. Biomed. Mater. Res. (Appl. Biomater.), 38 (1997), pp. 155–182.

    Article  CAS  Google Scholar 

  29. S.M. Kurtz et al., “The Yielding, Plastic Flow, and Fracture Behavior of Ultra-High Molecular Weight Polyethylene used in Total Joint Replacements,” Biomaterials, 19(21) (1998), pp. 1989–2003.

    Article  CAS  Google Scholar 

  30. L. Pruitt, “Deformation, Yielding, Fracture and Fatigue Behavior of Conventional and Highly Cross-Linked Ultra High Molecular Weight Polyethylene,” Biomaterials, 26(8) (2004), pp. 905–915.

    Article  CAS  Google Scholar 

  31. J.D. Bobyn et al., “Producing and Avoiding Stress Shielding,” Clin. Orthop. Rel. Res., (274) (1992), pp. 79–96.

  32. F.R.A.J. Rose and R.O.C. Oreffo, “Bone Tissue Engineering: Hope vs. Hype,” Biochemical Biophysical Res. Comm., 292 (2002), pp. 1–7.

    Article  CAS  Google Scholar 

  33. H. Oguchi et al., “Long-Term Histological Evaluation of Hydroxyapatite Ceramics in Humans,” Biomaterials, 16 (1995), pp. 33–38.

    Article  CAS  Google Scholar 

  34. K.E. Tanner, R.N. Downes, and W. Bonfield, “Clinical Applications of Hydroxyapatite Reinforced Materials,” Brit. Ceram. Trans., 93(3) (1994), pp. 104–107.

    CAS  Google Scholar 

  35. J.L. Dornhoffer, “Hearing Results with the Dornhoffer Ossicular Replacement Prostheses,” Laryngoscope, 108,Pt. 1 (4) (1998), pp. 531–536.

    Article  CAS  Google Scholar 

  36. J.F. Mano et al., “Bioinert, Biodegradable and Injectable Polymeric Matrix Composites for Hard Tissue Replacement: State of the Art and Recent Developments,” Compos. Sci. Technol., 64 (2004), pp. 789–817.

    Article  CAS  Google Scholar 

  37. M.J. Yaszemski et al., “Evolution of Bone Transplantation: Molecular, Cellular and Tissue Strategies to Engineer Human Bone,” Biomaterials, 17(2) (1996), pp. 175–185.

    Article  CAS  Google Scholar 

  38. C.M. Agrawal and R.B. Ray, “Biodegradable Polymeric Scaffolds for Musculoskeletal Tissue Engineering,” J. Biomed. Mater. Res., 55(2) (2001), pp. 141–150.

    Article  CAS  Google Scholar 

  39. K. Rezwan et al., “Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering,” Biomaterials, 27 (2006), pp. 3413–3431.

    Article  CAS  Google Scholar 

  40. M.S. Abu Bakar, P. Cheang, and K.A. Khor, “Thermal Processing of Hydroxyapatite Reinforced Polyetheretherketone Composites,” J. Mater. Proc. Technol., 89–90 (1999), pp. 462–466.

    Article  Google Scholar 

  41. M.S. Abu Bakar, P. Cheang, and K.A. Khor, “Mechanical Properties of Injection Molded Hydroxyapatite-Polyetheretherketone Biocomposites,” Compos. Sci. Technol., 63 (2003), pp. 421–425.

    Article  CAS  Google Scholar 

  42. M.S. Abu Bakar et al., “Tensile Properties, Tension-Tension Fatigue and Biological Response of Polyetheretherketone-Hydroxyapatite Composites for Load-Bearing Orthopedic Implants,” Biomaterials, 24(13) (2003), pp. 2245–2250.

    Article  CAS  Google Scholar 

  43. S.M. Tang et al., “Tension-Tension Fatigue Behavior of Hydroxyapatite Reinforced Polyetheretherketone Composites,” Int. J. Fatigue, 26 (2004), pp. 49–57.

    Article  CAS  Google Scholar 

  44. L. Fang, Y. Leng, and P. Gao, “Processing and Mechanical Properties of HA/UHMWPE Nanocomposites,” Biomaterials, 27 (2006), pp. 3701–3707.

    Article  CAS  Google Scholar 

  45. J. Dandurand et al., “Study of the Mineral-Organic Linkage in a Apatitic Reinforced Bone Cement,” J. Biomed. Mater. Res., 24 (1990), pp. 1377–1384.

    Article  CAS  Google Scholar 

  46. E.J. Harper, J.C. Behiri, and W. Bonfield, “Flexural and Fatigue Properties of a Bone Cement Based upon Polyethylmethacrylate and Hydroxyapatite,” J. Mater. Sci.: Mater. Med., 6(12) (1995), pp. 799–803.

    Article  CAS  Google Scholar 

  47. C.I. Vallo et al., “Polymethylmethacrylate-Based Bone Cement Modified with Hydroxyapatite,” J. Biomed. Mater. Res., 48B (1999), pp. 150–158.

    Article  Google Scholar 

  48. S. Shinzato et al., “Bioactive Polymethyl Methacrylate-Based Bone Cement: Comparison of Glass Beads, Apatite-and Wollastonite-Containing Glass-Ceramic, and Hydroxyapatite Fillers on Mechanical and Biological Properties,” J. Biomed. Mater. Res., 51(2) (2000), pp. 258–272.

    Article  CAS  Google Scholar 

  49. M.E. Islas-Blancas et al., “Characterization of Bone Cements Prepared with Functionalized Methacrylates and Hydroxyapatite,” J. Biomater. Sci. Polymer Edn., 12(8) (2001), pp. 893–910.

    Article  CAS  Google Scholar 

  50. A. Canul-Chuil et al., “Comparative Study of Bone Cements Prepared with Either HA or α-TCP and Functionalized Methacrylates,” J. Biomed. Mater. Res., 64B (2003), pp. 27–37.

    Article  CAS  Google Scholar 

  51. L. Morejón et al., “Static Mechanical Properties of Hydroxyapatite (HA) Powder-Filled Acrylic Bone Cements: Effect of Type of HA Powder,” J. Biomed. Mater. Res., 72B(2) (2004), pp. 345–352.

    Article  CAS  Google Scholar 

  52. G. Lewis, “Alternative Acrylic Bone Cement Formulations for Cemented Arthroplasties: Present Status, Key Issues, and Future Prospects,” J. Biomed. Mater. Res., 84B (2007), pp. 301–319.

    Article  CAS  Google Scholar 

  53. M. Saito et al., “Experimental Studies on a New Bioactive Bone Cement: Hydroxyapatite Composite Resin,” Biomaterials, 15(2) (1994), pp. 156–160.

    Article  CAS  Google Scholar 

  54. R. Labella, M. Braden, and S. Deb, “Novel Hydroxyapatite-Based Dental Composites,” Biomaterials, 15(15) (1994), pp. 1197–1200.

    Article  CAS  Google Scholar 

  55. M. Kobayashi et al., “Bioactive Bone Cement: Comparison of Apatite and Wollastonite Containing Glass-Ceramic, Hydroxyapatite, and β-Tricalcium Phosphate Fillers on Bone Bonding Strength,” J. Biomed. Mater. Res., 42(2) (1998), pp. 223–237.

    Article  CAS  Google Scholar 

  56. M. Kobayashi et al., “Effect of Bioactive Filler Content on Mechanical Properties and Osteoconductivity of Bioactive Bone Cement,” J. Biomed. Mater. Res., 46(4) (1999), pp. 447–457.

    Article  CAS  Google Scholar 

  57. C. Santos et al., “Hydroxyapatite as a Filler for Dental Composite Materials: Mechanical Properties and in vitro Bioactivity of Composites,” J. Mater. Sci. Mater. Med., 12 (2001), pp. 565–573.

    Article  CAS  Google Scholar 

  58. C.M. Serre et al., “In vitro Induction of a Calcifying Matrix by Biomaterials Constituted of Collagen and/ or Hydroxyapatite: An Ultrastructural Comparison of Three Types of Biomaterials,” Biomaterials, 14(2) (1993), pp. 97–106.

    Article  CAS  Google Scholar 

  59. K.S. TenHuisen et al., “Formation and Properties of a Synthetic Bone Composite: Hydroxyapatite-Collagen,” J. Biomed. Mater. Res., 29 (1995), pp. 803–810.

    Article  CAS  Google Scholar 

  60. C. Du et al., “Formation of Calcium Phosphate/ Collagen Composites through Mineralization of Collagen Matrix,” J. Biomed. Mater. Res., 50(4) (2000), pp. 518–527.

    Article  CAS  Google Scholar 

  61. M. Kikuchi et al., “Self-Organization Mechanism in a Bone-Like Hydroxyapatite/Collagen Nanocomposite Synthesized in vitro and Its Biological Reaction in vivo,” Biomaterials, 22 (2001), pp. 1705–1711.

    Article  CAS  Google Scholar 

  62. S. Higashi et al., “Polymer-Hydroxyapatite Composites for Biodegradable Bone Fillers,” Biomaterials, 7 (1986), pp. 183–187.

    Article  CAS  Google Scholar 

  63. C.C.P.M. Verheyen et al., “Evaluation of Hydroxylapatite/Poly(L-lactide) Composites: Mechanical Behavior,” J. Biomed. Mater. Res., 26 (1992), pp. 1277–1296.

    Article  CAS  Google Scholar 

  64. N. Ignjatovic et al., “Synthesis and Properties of Hydroxyapatite/Poly-L-lactide Composite Biomaterials,” Biomaterials, 20(9) (1999), pp. 809–816.

    Article  CAS  Google Scholar 

  65. Y. Shikinami and M. Okuno, “Bioresorbable Devices Made of Forged Composites of Hydroxyapatite (HA) Particles and Poly-L-lactide (PLLA): Part I. Basic Characteristics,” Biomaterials, 20(9) (1999), pp. 859–877.

    Article  CAS  Google Scholar 

  66. Z. Hong et al., “Nano-Composite of Poly(L-lactide) and Surface Grafted Hydroxyapatite: Mechanical Properties and Biocompatibility,” Biomaterials, 26 (2005), pp. 6296–6304.

    Article  CAS  Google Scholar 

  67. D.D. Wright-Charlesworth et al., “In vitro Flexural Properties of Hydroxyapatite and Self-Reinforced Poly(L-lactic acid),” J. Biomed. Mater. Res., 78A (2006), pp. 541–549.

    Article  CAS  Google Scholar 

  68. C. Durucan and P.W. Brown, “Calcium-Deficient Hydroxyapatite-PLGA Composites: Mechanical Properties and Microstructural Characterization,” J. Biomed. Mater. Res., 51(4) (2000), pp. 726–734.

    Article  CAS  Google Scholar 

  69. Y. Matsuya et al., “Effect of Powder Grinding on Hydroxyapatite Formation in a Polymeric Calcium Phosphate Cement Prepared from Tetracalcium Phosphate and Poly(methyl Vinyl Ether-Maleic Acid),” Biomaterials, 20(7) (1999), pp. 691–697.

    Article  CAS  Google Scholar 

  70. R.A. Mickiewicz, A.M. Mayes, and D. Knaack, “Polymer-Calcium Phosphate Cement Composites for Bone Substitutes,” J. Biomed. Mater. Res., 61(4) (2002), pp. 581–592.

    Article  CAS  Google Scholar 

  71. L. Sun et al., “Fast Setting Calcium Phosphate Cement-Chitosan Composite: Mechanical Properties and Dissolution Rates,” J. Biomaterials App., 21(3) (2007), pp. 299–315.

    Article  CAS  Google Scholar 

  72. R.L. Reis and A.M. Cunha, “New Degradable Load-Bearing Biomaterials Composed of Reinforced Starch Based Blends,” J. App. Med. Polym., 4 (2000), pp. 1–5.

    CAS  Google Scholar 

  73. I. Yamaguchi et al., “Preparation and Microstructure Analysis of Chitosan/Hydroxyapatite Nanocomposites,” J. Biomed. Mater. Res., 55(1) (2001), pp. 20–27.

    Article  CAS  Google Scholar 

  74. D. Hakimimehr, D-M. Liu, and T. Troczynski, “In-situ Preparation of Poly(propylene Fumarate)—Hydroxyapatite Composite,” Biomaterials, 26 (2005), pp. 7297–7303.

    Article  CAS  Google Scholar 

  75. G. Wu et al., “In vitro Behaviors of Hydroxyapatite Reinforced Polyvinyl Alcohol Hydrogel Composite,” Mater. Chem. Phys., 107 (2008), pp. 364–369.

    Article  CAS  Google Scholar 

  76. R.K. Roeder, M.S. Sproul, and C.H. Turner, “Hydroxyapatite Whiskers Provide Improved Mechanical Properties in Reinforced Polymer Composites,” J. Biomed. Mater. Res., 67A(3) (2003), pp. 801–812.

    Article  CAS  Google Scholar 

  77. N.H. Ladizesky et al., “Fibre Reinforcement of Ceramic/Polymer Composites for a Major Load-Bearing Bone Substitute Material,” Compos. Sci. Technol., 58 (1998), pp. 419–434.

    Article  CAS  Google Scholar 

  78. W.J. McGregor et al., “Fatigue Properties of Isotropic and Hydrostatically Extruded HAPEX™,” J. Mater. Sci. Lett., 19 (2000), pp. 1787–1788.

    Article  CAS  Google Scholar 

  79. M. Bonner et al., “Anisotropic Mechanical Properties of Oriented HAPEX™,” J. Mater. Sci., 37 (2002), pp. 325–334.

    Article  CAS  Google Scholar 

  80. R.A. Sousa et al., “Processing and Properties of Bone-Analogue Biodegradable and Bioinert Polymer Composites,” Compos. Sci. Technol., 63 (2003), pp. 389–402.

    Article  CAS  Google Scholar 

  81. J.O. Eniwumide, R. Joseph, and K.E. Tanner, “Effect of Particle Morphology and Polyethylene Molecular Weight on the Fracture Toughness of Hydroxyapatite Reinforced Polyethylene Composites,” J. Mater. Sci. Mater. Med., 15 (2004), pp. 1147–1152.

    Article  CAS  Google Scholar 

  82. M. Todo et al., “Relationship between Microstructure and Fracture Behavior of Bioabsorbable HA/PLLA Composites,” Composites, Pt. A, 37 (2006), pp. 2221–2225.

    Article  CAS  Google Scholar 

  83. S.M. Kurtz and J.N. Devine, “PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants,” Biomaterials, 28 (2007), pp. 4845–4869.

    Article  CAS  Google Scholar 

  84. E. Lucchinetti, “Dense Bone Tissue as a Molecular Composite,” Bone Mechanics Handbook, 2nd edition, ed. S.C. Cowin (Boca Raton, FL: CRC Press, 2001), chapter 13.

    Google Scholar 

  85. S. Deb et al., “Hydroxyapatite-Polyethylene Composites: Effect of Grafting and Surface Treatment of Hydroxyapatite,” J. Mater. Sci. Mater. Med., 7(4) (1996), pp. 191–193.

    Article  CAS  Google Scholar 

  86. M. Wang, S. Deb, and W. Bonfield, “Chemically Coupled Hydroxyapatite-Polyethylene Composites: Processing and Characterisation,” Mater. Lett., 44(6) (2000), pp. 119–124.

    Article  CAS  Google Scholar 

  87. S.L. Evans and P.J. Gregson, “Composite Technology in Load-Bearing Orthopaedic Implants,” Biomaterials, 19(15) (1998), pp. 1329–1342.

    Article  CAS  Google Scholar 

  88. H.H.K. Xu, D.T. Smith, and C.G. Simon, “Strong and Bioactive Composites Containing Nano-Silica-Fused Whiskers for Bone Repair,” Biomaterials, 25(19) (2004), pp. 4615–4626.

    Article  CAS  Google Scholar 

  89. R.K. Roeder et al., “Kinetic Effects on Hydroxyapatite Whiskers Synthesized by the Chelate Decomposition Method,” J. Am. Ceram. Soc., 89(7) (2006), pp. 2096–2104.

    CAS  Google Scholar 

  90. J.A. Van Nausdle et al., “MC3T3-E1 Response on Hydroxyapatite Powder and Whisker Substrates,” Trans. Orthop. Res. Soc., 30 (2005), doc. no. 1004.

    Google Scholar 

  91. W. Yue and R.K. Roeder, “Micromechanical Model for Hydroxyapatite Whisker Reinforced Polymer Biocomposites,” J. Mater. Res., 21(8) (2006), pp. 2136–2145.

    Article  CAS  Google Scholar 

  92. R.J. Kane, G.L. Converse, and R.K. Roeder, “Effects of the Reinforcement Morphology on the Fatigue Properties of Hydroxyapatite Reinforced Polymers,” J. Mech. Behav. Biomed. Mater., in press (2008).

  93. G.L. Converse, W. Yue, and R.K. Roeder, “Processing and Tensile Properties of Hydroxyapatite-Whisker-Reinforced Polyetheretherketone,” Biomaterials, 28(6) (2007), pp. 927–935.

    Article  CAS  Google Scholar 

  94. R.K. Roeder, M.M. Sproul, and C.H. Turner, “Hydroxyapatite Whisker Reinforced PMMA and bis-GMA/TEG-DMA Injectable Bone Cements,” Trans. Soc. Biomaterials, 24 (2001), doc. no. 203.

    Google Scholar 

  95. M. Aizawa et al., “In Vivo and In Vitro Evaluation of the Biocompatibility of the Hydroxyapatite-PMMA Hybrid Materials Having Mechanical Property Similar to that of Cortical Bone,” Key Engin. Mater., 218–220 (2002), pp. 465–468.

    Article  Google Scholar 

  96. T.-Y. Liu, S.-Y. Chen, and D.-M. Liu, “Influence of the Aspect Ratio of Bioactive Nanofillers on Rheological Behavior of PMMA-Based Orthopedic Materials,” J. Biomed. Mater. Res., 71B(1) (2004), pp. 116–122.

    Article  CAS  Google Scholar 

  97. R.J. Kane and R.K. Roeder, unpublished results (2008).

  98. F.A. Müller et al., “Whisker-Reinforced Calcium Phosphate Cements,” J. Am. Ceram. Soc., 90(11) (2007), pp. 3694–3697.

    Article  CAS  Google Scholar 

  99. E.M. Christenson et al., “Nanobiomaterial Applications in Orthopaedics,” J. Orthop. Res., 25(1) (2007), pp. 11–22.

    Article  CAS  Google Scholar 

  100. V. Karageorgiou and D. Kaplan, “Porosity of 3D Biomaterial Scaffolds and Osteogenesis,” Biomaterials, 26 (2005), pp. 5474–5491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan K. Roeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeder, R.K., Converse, G.L., Kane, R.J. et al. Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 60, 38–45 (2008). https://doi.org/10.1007/s11837-008-0030-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0030-2

Keywords

Navigation