Skip to main content

Synthesis of Pure and Substituted Hydroxyapatite Nanoparticles by Cost Effective Facile Methods

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles

Abstract

Bioceramics are the materials which can enhance the quality and longevity of human life. Hydroxyapatite (HAP) is a readily considered bioceramic material for artificial bone substitution in biomedical field due to its compositional resemblance to the bone mineral and very good biocompatiblity. Recently, HAP has attracted significant interest in drug delivery and bone tissue engineering applications. The human cortical bone consists of biological HAP which is found within collagen as nanodimensional crystalline aggregates. There has been enormous effort in developing bioactive synthetic ceramics that could closely mimic the fine and complex structure of human bone. Though HAP is highly biocompatible and bioactive, it possesses poor mechanical properties. In order to overcome this drawback, attempts are made toward the synthesis of mineralized HAP. Several methodologies have been investigated and developed for the synthesis of pure and substituted HAP. Modern research deals with novel HAP nanostructure formulations with properties closer to those of living bone, aiming at improved and more effective biomedical applications. This chapter presents the facile and cost-effective synthesis methods of pure and substituted HAP nanoparticles such as sol–gel approach, hydrothermal techniques, etc., toward effective biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A. Rabiei, T. Blalock, B. Thomas et al., Microstructure, mechanical properties, and biological response to functionally graded HA coatings. Mater. Sci. Eng. C 27, 529–533 (2007)

    Article  Google Scholar 

  2. Y. Gu, K. Khor, P. Cheang, Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials 25, 4127–4134 (2004)

    Article  Google Scholar 

  3. P. O’Hare, B.J. Meenan, G.A. Burke et al., Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials 31, 515–522 (2010)

    Article  Google Scholar 

  4. R.Z. Legeros, Biodegradation and bioresorption of calcium phosphate ceramics. Clin. Mater. 14, 65–88 (1993)

    Article  Google Scholar 

  5. S.I. Stupp, G.W. Ciegler, Organoapatites: materials for artificial bone. I. Synthesis and microstructure. J. Biomed. Mater. Res. 26, 169–183 (1992)

    Article  Google Scholar 

  6. S.V. Dorozhkin, Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials 2, 1975–2045 (2009)

    Article  Google Scholar 

  7. V.M. Rusu, C.H. Ng, M. Wilke et al., Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26, 5414–5426 (2005)

    Article  Google Scholar 

  8. M. Vallet-Regí, J.M. González-Calbet, Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32, 1–31 (2004)

    Article  Google Scholar 

  9. G.E. Poinern, R.K. Brundavanam, N. Mondinos et al., Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason. Sonochem. 16, 469–474 (2009)

    Article  Google Scholar 

  10. Y. Wang, L. Liu, S. Guo, Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym. Degrad. Stab. 95, 207–213 (2010)

    Article  Google Scholar 

  11. F. Wang, M. Li, Y. Lu et al., Synthesis and microstructure of hydroxyapatite nanofibers synthesized at 37 °C. Mater. Chem. Phys. 95, 145–149 (2006)

    Article  Google Scholar 

  12. S. Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Res. 62, 600–612 (2002)

    Article  Google Scholar 

  13. F. Chen, Z. Wang, C. Lin, Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater. Lett. 57, 858–861 (2002)

    Article  Google Scholar 

  14. Y. Feng, G. Haifeng, Z. Haijiao et al., Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater. 6, 2212–2218 (2010)

    Article  Google Scholar 

  15. O. Ichiro, Y. Toshiharu, J. Hai-Ying et al., Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy. Biomaterials 25, 4709–4718 (2004)

    Article  Google Scholar 

  16. G.X. Ni, W.W. Lu, B. Xu et al., Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials 27, 5127–5133 (2006)

    Article  Google Scholar 

  17. A. Balamurugan, A.H.S. Rebelo, A.F. Lemos et al., Suitability evaluation of sol–gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent. Mater. 24, 1374–1380 (2008)

    Article  Google Scholar 

  18. W.R. Deppert, R. Lukacin, Chapter 5 hydroxyapatite chromatography, in Protein Liquid Chromatography, (Elsevier, Amsterdam, 1999), pp. 271–299.

    Google Scholar 

  19. P. Molle, A. Lienard, A. Gramsik, Apatite as an interesting seed to remove phosphorus from waste-water in constructed wetlands. Water Sci. Technol. 51, 193–203 (2005)

    Google Scholar 

  20. J.T. Webster, A. Elizabeth, M. Schuleter et al., Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 25, 2111–2121 (2004)

    Article  Google Scholar 

  21. C.M. Mardziah, I. Sopyan, S. Ramesh, Strontium-doped hydroxyapatite nanopowder via sol–gel method: effect of strontium concentration and calcination temperature on phase behavior. Trend Biomater. Artif. Organs 23, 105–113 (2009)

    Google Scholar 

  22. C. Capuccini, P. Torricelli, F. Sima et al., Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater. 4, 1885–1893 (2008)

    Article  Google Scholar 

  23. Y. Li, Q. Li, S. Zhu et al., The effect of strontium substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31, 9006–9014 (2010)

    Article  Google Scholar 

  24. W. Xue, J. Moore, H.L. Hosick et al., Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J. Biomed. Mater. Res. Part A 79, 804–814 (2006)

    Article  Google Scholar 

  25. Y. Li, W. Tjandra, K.C. Tam, Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates. Mater. Res. Bull. 43, 2318–2326 (2008)

    Article  Google Scholar 

  26. M.I. Kay, R.A. Young, A.S. Posner, Crystal structure of hydroxyapatite. Nature 204, 1050–1052 (1964)

    Article  Google Scholar 

  27. J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates (Elsevier, Amsterdam, 1994)

    Google Scholar 

  28. T.A. Fuierer, M. LoRe, S.A. Puckett et al., A mineralization adsorption and mobility study of hydroxyapatite surfaces in the presence of zinc and magnesium ions. Langmuir 10, 4721–4725 (1994)

    Article  Google Scholar 

  29. A. Bigi, G. Falini, E. Foresti et al., Magnesium influence on hydroxyapatite crystallization. J. Inorg. Biochem. 49, 69–78 (1993)

    Article  Google Scholar 

  30. E. Bertoni, A. Bigi, G. Cojazzi et al., Nanocrystals of magnesium and fluoride substituted hydroxyapatite. J. Inorg. Biochem. 72, 29–35 (1998)

    Article  Google Scholar 

  31. N. Kanzaki, K. Onuma, G. Treboux et al., Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face. J. Phys. Chem. B 104, 4189–4194 (2000)

    Article  Google Scholar 

  32. W.L. Suchanek, K. Byrappa, P. Shuk et al., Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials 25, 4647–4657 (2004)

    Article  Google Scholar 

  33. T.A. Kuriakose, S.N. Kalkura, M. Palanichamy et al., Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. J. Cryst. Growth 263, 517–523 (2004)

    Article  Google Scholar 

  34. S. Sarig, F. Kahana, Rapid formation of nanocrystalline apatite. J. Cryst. Growth 237, 55–59 (2002)

    Article  Google Scholar 

  35. S. Bose, S.K. Saha, Synthesis of hydroxyapatite nanopowders via sucrose templated sol–gel method. J. Am. Ceram. Soc. 86, 1055–1057 (2003)

    Article  Google Scholar 

  36. N. Kivrak, A. Ta, Synthesis of calcium hydroxyapatite tricalcium phosphate (HA TCP) composite bioceramic powders and their sintering behavior. J. Am. Ceram. Soc. 81, 2245–2252 (1998)

    Article  Google Scholar 

  37. R.A. Young, D.W. Holcomb, Variability of hydroxyapatite preparations. Calcified Tissue Int. 34, S17 (1982)

    Google Scholar 

  38. L. Bernard, M. Freche, J.L. Lacout et al., Preparation of hydroxyapatite by neutralization at low temperature-influence of purity of the raw material. Powder Technol. 103, 19–25 (1999)

    Article  Google Scholar 

  39. H.S. Liu, T.S. Chin, L.S. Lai et al., Hydroxyapatite synthesized by a simplified hydrothermal method. Ceram Int. 23, 19–25 (1997)

    Article  Google Scholar 

  40. G.K. Lim, J. Wang, S.C. Ng et al., Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials 18, 1433–1439 (1997)

    Article  Google Scholar 

  41. W.L. Suchanek, P. Shuk, K. Byrappa et al., Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23, 699–710 (2002)

    Article  Google Scholar 

  42. A.C. Tas, Molten salt synthesis of calcium hydroxyapatite whiskers. J. Am. Ceram. Soc. 84, 295–300 (2001)

    Article  Google Scholar 

  43. Y.H. Tseng, C.S. Kuo, Y.Y. Li, C.P. Huang, Polymer-assisted synthesis of hydroxyapatite nanoparticle. Mater. Sci. Eng. C 29, 819–822 (2009)

    Article  Google Scholar 

  44. A. Fahami, R. Ebrahimi-Kahrizsangi, B. Nasiri-Tabrizi, Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci. 13, 135–141 (2011)

    Article  Google Scholar 

  45. C. Mochales, R.M. Wilson, S.E.P. Dowker, M.P. Ginebra, Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: structural characterisation. J. Alloys Compd. 509, 7389–7394 (2011)

    Article  Google Scholar 

  46. B. Nasiri-Tabrizi, P. Honarmandi, R. Ebrahimi-Kahrizsangi, Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater. Lett. 63, 543–546 (2009)

    Article  Google Scholar 

  47. D.W. Kim, I.S. Cho, J.Y. Kim et al., Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process. Langmuir 26, 384–388 (2009)

    Article  Google Scholar 

  48. M. Naruporn, Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J. Met. Mater. Min. 18, 15–20 (2008)

    Google Scholar 

  49. A. Paz, D. Guadarrama, M. López et al., A comparative study of hydroxyapatite nanoparticles synthesized by different routes. Quím. Nova 35, 1724–1727 (2012)

    Article  Google Scholar 

  50. I.Y. Pieters, E.A.P. De Maeyer, R.M.H. Verbeeck, Influence of Na+ on the stoichiometry of carbonated hydroxyapatite obtained by the hydrolysis of octacalcium phosphate. Inorg. Chem. 37, 6392–6395 (1998)

    Article  Google Scholar 

  51. J.L. Sturgeon, P.W. Brown, Effects of carbonate on hydroxyapatite formed from CaHPO4 and Ca4(PO4)2O. J. Mater. Sci. Mater. Med. 20, 1787–1794 (2009)

    Article  Google Scholar 

  52. H. Park, D. Baek, Y. Park et al., Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP. J. Mater. Sci. 39, 2531–2534 (2004)

    Article  Google Scholar 

  53. M.F. Hsieh, L.H. Perng, T.S. Chin, H.G. Perng, Phase purity of sol–gel-derived hydroxyapatite ceramic. Biomaterials 22, 2601–2607 (2001)

    Article  Google Scholar 

  54. J. Chen, Y. Wang, X. Chen et al., A simple sol–gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater. Lett. 65, 1923–1926 (2011)

    Article  Google Scholar 

  55. C.J. Brinker, G.W. Scherrer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic, San Diego, 1990)

    Google Scholar 

  56. S.K. Padmanabhan, A. Balakrishnan, M.C. Chu et al., Sol–gel synthesis and characterization of hydroxyapatite nanorods. Particuology 7, 466–470 (2009)

    Article  Google Scholar 

  57. I.S. Kim, P.N. Kumta, Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater. Sci. Eng. B 111, 232–236 (2004)

    Article  Google Scholar 

  58. B. Jokic´, M. Mitric´, V. Radmilovic´ et al., Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceram. Int. 37, 167–173 (2011)

    Article  Google Scholar 

  59. J. Liu, X. Ye, H. Wang et al., The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram. Int. 29, 629–633 (2003)

    Article  Google Scholar 

  60. H. Zhang, B.W. Darvell, Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide. Acta Biomater. 6, 3216–3222 (2010)

    Article  Google Scholar 

  61. G. Lim, J. Wang, S. Ng, L. Gan, Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant. J. Mater. Chem. 9, 1635–1639 (1999)

    Article  Google Scholar 

  62. S. Bose, S.K. Saha, Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem. Mater. 15, 4464–4469 (2003)

    Article  Google Scholar 

  63. S. Jarudilokkul, W. Tanthapanichakoon, V. Boonamnuayvittaya, Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloid Surface A 296, 149–153 (2007)

    Article  Google Scholar 

  64. M. Jevtic, M. Mitric, S. Skapin et al., Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation. Cryst. Growth Des. 8, 2217–2222 (2008)

    Article  Google Scholar 

  65. P. Rouhani, N. Taghavinia, S. Rouhani, Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrason. Sonochem. 17, 853–856 (2010)

    Article  Google Scholar 

  66. M.A. Giardina, M.A. Fanovich, Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation. Ceram. Int. 36, 1961–1969 (2010)

    Article  Google Scholar 

  67. J. Zhang, X. Zhan, X. Wen et al., Effects of ultrasonic and dispersants on shape and composition of hydroxyapatite by reflux method. Inorg. Mater. 45, 1362–1365 (2009)

    Article  Google Scholar 

  68. S.K. Pratihar, M. Garg, S. Mehra, S. Bhattacharyya, Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique. J. Mater. Sci. Mater. Med. 17, 501–507 (2006)

    Article  Google Scholar 

  69. S.K. Ghosh, S.K. Roy, B. Kundu et al., Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Mater. Sci. Eng. B 176, 14–21 (2011)

    Article  Google Scholar 

  70. S. Sasikumar, R. Vijayaraghavan, Synthesis and characterization of bioceramic calcium phosphates by rapid combustion synthesis. J. Mater. Sci. Technol. 26, 1114–1118 (2010)

    Article  Google Scholar 

  71. J.S. Cho, Y.C. Kang, Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J. Alloys Compd. 464, 282–287 (2008)

    Article  Google Scholar 

  72. M. Aizawa, T. Hanazawa, K. Itatani et al., Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique. J. Mater. Sci. 34, 2865–2873 (1999)

    Article  Google Scholar 

  73. N. Wakiya, M. Yamasaki, T. Adachi et al., Preparation of hydroxyapatite–ferrite composite particles by ultrasonic spray pyrolysis. Mater. Sci. Eng. B 173, 195–198 (2010)

    Article  Google Scholar 

  74. Z. Dong, Y. Li, Q. Zou, Degradation and biocompatibility of porous nanohydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 255, 6087–6091 (2009)

    Article  Google Scholar 

  75. P. Parhi, A. Ramanan, A.R. Ray, A convenient route for the synthesis of hydroxyapatite through a novel microwave-mediated meta thesis reaction. Mater. Lett. 58, 3610–3612 (2004)

    Article  Google Scholar 

  76. M. Sadat-Shojai, M.T. Khorasani, E.D. Khoshdargi et al., Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. (2013). doi:10.1016/j.actbio.2013.04.012

    Google Scholar 

  77. D. Gopi, J. Indira, L. Kavitha et al., Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method. Spectrochim. Acta: Mol. Biomol. Spectrosc. A 77, 545–547 (2010)

    Article  Google Scholar 

  78. D. Gopi, K.M. Govindaraju, V.C.A. Prakash et al., Spectroscopic investigations of nanohydroxyapatite powders synthesized by conventional and ultrasonic coupled sol–gel routes. Spectrochim. Acta: Mol. Biomol. Spectrosc. A 70, 1243–1245 (2008)

    Article  Google Scholar 

  79. D. Gopi, J. Indira, V. Collins Arun Prakash et al., Spectroscopic characterization of porous nanohydroxyapatite synthesized by a novel amino acid soft solution freezing method. Spectrochim. Acta: Mol. Biomol. Spectrosc. A 74, 282–284 (2009)

    Article  Google Scholar 

  80. D. Gopi, S. Nithiya, E. Shinyjoy et al., Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications. Spectrochim. Acta: Mol. Biomol. Spectrosc. A 92, 194–200 (2012)

    Article  Google Scholar 

  81. D. Gopi, J. Indira, L. Kavitha et al., Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method. Spectrochim. Acta: Mol. Biomol. Spectrosc. A 93, 131–134 (2012)

    Article  Google Scholar 

  82. D. Gopi, J. Indira, S. Nithiya et al., The influence of surfactant concentration on nanohydroxyapatite growth. Bull. Mater. Sci. 36, 799–805 (2013)

    Article  Google Scholar 

  83. D. Gopi, N. Bhuvaneshwari, J. Indira et al., A novel green template assisted synthesis of hydroxyapatite nanorods and their spectral characterizations. Spectrochim. Acta: Mol. Biomol. Spectrosc. A 107, 196–202 (2013)

    Article  Google Scholar 

  84. D. Gopi, K. Kanimozhi, N. Bhuvaneshwari et al., Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization. Spectrochim. Acta: Mol. Biomol. Spectrosc. 118, 589–597 (2014)

    Article  Google Scholar 

  85. Y.X. Pang, X. Bao, Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 23, 1697–1704 (2003)

    Article  Google Scholar 

  86. N. Degirmenbasi, D.M. Kalyon, E. Birinci, Biocomposites of nanohydroxyapatite with collagen and poly (vinyl alcohol). Colloids Surf. B: Biointerf. 48, 42–49 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors D. Gopi acknowledges the major financial support from the Indian Council of Medical Research (ICMR, IRIS ID No. 2010-08660, Ref. No.: 5/20/11(Bio)/10-NCD-I), Department of Science and Technology, New Delhi, India (DST-SERC Ref. No.: SR/FTP/ETA-04/2009, DST-TSD Ref. No.: DST/TSG/NTS/2011/73, and DST-EMEQ Ref. No.: SB/EMEQ-185/2013), and Council of Scientific and Industrial Research (Ref. No.: 01(2547)/11/EMR-II, dated 12.12.2011) in the form of major research projects. Also, D.Gopi and L.Kavitha acknowledge the UGC (Ref. No. F. 30-1/2013 (SA-II)/RA-2012-14-NEW-SC-TAM-3240 and Ref. No. F. 30-1/2013(SA-II)/RA-2012-14-NEW-GE-TAM-3228) for the research awards. L. Kavitha gratefully acknowledges the financial support from the ICTP, Italy, in the form of regular associateship. Also D. Rajeswari acknowledges the major financial support from the DST (Ref. No. SR/WOS-A/PS-26/2012 (G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gopi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Gopi, D., Kavitha, L., Rajeswari, D. (2015). Synthesis of Pure and Substituted Hydroxyapatite Nanoparticles by Cost Effective Facile Methods. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics