Skip to main content

Advertisement

Log in

Influence of process parameters on the sol–gel synthesis of nano hydroxyapatite using various phosphorus precursors

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydroxyapatite Ca10(PO4)6(OH)2 has attracted widespread interest from both orthopedic and dental fields due to its excellent biocompatibility and tissue bioactivity properties. Since nanophase materials can mimic the dimensions of constituent components of natural tissues, the implants developed from nanophase material could serve as a successful alternative. However, the defects of hydroxyapatite ceramics, mainly brittleness and low fracture toughness, have been overcome by the use of nanophase hydroxyapatite coatings on the implant surfaces that integrate the good mechanical properties of metals and the bioactivity of hydroxyapatite. In the present investigation, Sol–gel hydroxyapatite was prepared from two different phosphorus precursors such as triethyl phosphate and phosphorus pentoxide respectively with calcium nitrate tetrahydrate as a calcium precursor. The effects of pH and liquid P31 Nuclear Magnetic Resonance spectroscopy for the solution aged at different periods were investigated and the synthesized hydroxyapatite powder was characterized by Transmission electron microscopy, X-ray Powder Diffraction, Fourier transform infrared spectroscopy and thermal analysis respectively. In order to fully understand the bioactivity of the synthesized materials, they were coated on 316L Stainless Steel implant surface by spin coating method at the spin speed of 2,000 Revolutions per minute. The effect of nanoparticles on the surface of 316L Stainless Steel implant was studied by adhesive strength measurements. The corrosion resistance property of the hydroxyapatite coatings was evaluated by electrochemical impedance analysis. From the results, it was observed that the hydroxyapatite coatings obtained from different precursors have very high resistance to corrosion with higher adhesive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rho JY, Kuhn-Spearing L, Zioupos P (1998) Med Eng Phys 20:92

    Article  CAS  Google Scholar 

  2. Clemens JA, Klein CP, Vriesde RC, Rozing PM, de Groot K (1998) J Biomed Mater Res 40:341

    Article  CAS  Google Scholar 

  3. Bezzi G, Celotti G, Landi E, La Torretta TMG, Sopyan I, Tampieri A (2003) Mater Chem Phys 78:816

    Article  CAS  Google Scholar 

  4. Mavis B, Tas AC (2000) J Am Ceram Soc 83:989

    Article  CAS  Google Scholar 

  5. Huang YY, Chou KS (2003) Ceram Int 29:485

    Article  CAS  Google Scholar 

  6. Paul W, Sharma CP (2006) Am J Biochem Biotechnol 2:41

    Article  CAS  Google Scholar 

  7. Pang YX, Bao X (2003) J Eur Ceram Soc 23:1697

    Article  CAS  Google Scholar 

  8. Kim HW, Koh YH, Li LH, Lee S, Kim HE (2004) Biomaterials 25:2533

    Article  CAS  Google Scholar 

  9. Kim HW, Kong YM, Bae CJ, Noh YJ, Kim HE (2004) Biomaterials 25:2919

    Article  CAS  Google Scholar 

  10. Seok Kim II, Kumta PN (2004) Mater Sci Eng B 111:232

    Article  Google Scholar 

  11. Weng W, Baptista JL (1999) J Am Ceram Soc 82:27

    Article  CAS  Google Scholar 

  12. Tian F, Pan L, Wu X, Wu F (1988) J Non Cryst Solids 104:129

    Article  CAS  Google Scholar 

  13. Gross KA, Hanley L, Chai CS, Kannangara K, Ben-Nissan B (1998) J Mater Sci Mater Med 9:839

    Article  CAS  Google Scholar 

  14. Westheimer FH, Huang S, Coritz F (1988) J Am Chem Soc 110:181

    Article  CAS  Google Scholar 

  15. Young RS, Holcomb DW (1982) Calif Tissue Int 34:17

    CAS  Google Scholar 

  16. Livage J, Barboux P, Vandenborre MT, Schmutz C, Taulell F (1992) J Non Cryst Solids 147/148:18

    Article  Google Scholar 

  17. Anee TK, Ashok M, Palnichamy M, Kalkura SN (2003) Mater Chem Phys 80:725

    Article  CAS  Google Scholar 

  18. Liu DM, Yang Q, Troczynski T, Tseng WJ (2002) Biomaterials 23:1679

    Article  CAS  Google Scholar 

  19. Stoch A, Jastrzebski W, Brozek A, Stoch J, Szaraniec J, Trybalska B, Kmita G (2000) J Mol Struct 555:375

    Article  CAS  Google Scholar 

  20. Debruijn JD, Bovell YP, Van blitterswijk CA (1994) Biomaterials 15:543

    Article  CAS  Google Scholar 

  21. Blakeslee KC, Condrate RA (1971) J Am Ceram Soc 54:559

    Article  CAS  Google Scholar 

  22. Yanbao Li, Li Dongxu (2008) Int J Appl Ceram Technol 5:442

    Article  Google Scholar 

  23. Rieu J (1993) Clin Mater 12:227

    Article  CAS  Google Scholar 

  24. De Groot K, Klein CPAT, Wolke JGC, de Bliek-Hogervost JMA (1990) Chemistry of calcium phosphate bioceramics. In: Yamamuro T, Hench LL, Wilson J (eds) Handbook of bioactive ceramics, vol II. CRC Press, Boca Raton, Florida

  25. Tas AC (2000) J Eur Ceram Soc 20:2389

    Article  CAS  Google Scholar 

  26. Park JB, Lakes RS (1992) Biomaterials: an introduction. Plenum Press, New York

    Google Scholar 

  27. Yang YC, Chang E, Lee SY (2003) J Biomed Mater Res Part A 67:886

    Article  CAS  Google Scholar 

  28. Vijayalakshmi U, Rajeswari S (2007) J Solgel Sci Technol 43:251

    Article  CAS  Google Scholar 

  29. Vijayalakshmi U, Prabakaran K, Rajeswari S (2008) J Biomed Mater Res Part A 87(A):739

    Article  Google Scholar 

  30. Uhlmann DR, Suratwala T, Davidson K, Boulton JM, Teowee G (1997) J Non Cryst Solids 218:113

    Article  CAS  Google Scholar 

  31. Thangaraj V, Eliaz N, Chitharanjan Hegde A (2009) J Appl Electrochem 39:339

    Article  CAS  Google Scholar 

  32. Catledge SA, Fries MD, Vohra atledge SA, Fries MD, Vohra YK, Lace field WR, Lemons KE, Woodard S, Venugopalan R (2002) J Nano Sci Nano Technol 2:293

    CAS  Google Scholar 

  33. Amato LE, Lopez DA, Galliano PG, Cere SM (2005) Mater Lett 59:2026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Vijayalakshmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayalakshmi, U., Rajeswari, S. Influence of process parameters on the sol–gel synthesis of nano hydroxyapatite using various phosphorus precursors. J Sol-Gel Sci Technol 63, 45–55 (2012). https://doi.org/10.1007/s10971-012-2762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2762-2

Keywords

Navigation