Advertisement

Journal of Mathematical Biology

, Volume 70, Issue 3, pp 485–532 | Cite as

Mesoscopic and continuum modelling of angiogenesis

  • F. Spill
  • P. Guerrero
  • T. Alarcon
  • P. K. Maini
  • H. M. Byrne
Article

Abstract

Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells.

Keywords

Angiogenesis Stochastic models Master equation Mesoscopic models Reaction–diffusion system 

Mathematics Subject Classification (2000)

92C17 Cell movement (chemotaxis, etc.) 60J70 Applications of Brownian motions 35Q92 PDEs in connection with biology and other natural sciences 

Notes

Acknowledgments

This publication was based on work supported in part by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). TA and PG gratefully acknowledge the Spanish Ministry for Science and Innovation (MICINN) for funding under grant MTM2011-29342 and Generalitat de Catalunya for funding under grant 2009SGR345. PKM was partially supported by the National Cancer Institute, National Institutes of Health grant U54CA143970.

References

  1. Alarcón T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Simul 3(2):440–475CrossRefMATHMathSciNetGoogle Scholar
  2. Anderson AR, Chaplain M (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899CrossRefMATHGoogle Scholar
  3. Araujo R, McElwain D (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66(5):1039–1091CrossRefMathSciNetGoogle Scholar
  4. Balding D, McElwain D (1985) A mathematical model of tumour-induced capillary growth. J Theor Biol 114(1):53–73CrossRefGoogle Scholar
  5. Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92(9):3105–3121CrossRefGoogle Scholar
  6. Billy F, Ribba B, Saut O, Morre-Trouilhet H, Colin T, Bresch D, Boissel JP, Grenier E, Flandrois JP (2009) A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J Theor Biol 260(4):545–562CrossRefMathSciNetGoogle Scholar
  7. Breward CJ, Byrne HM, Lewis CE (2003) A multiphase model describing vascular tumour growth. Bull Math Biol 65(4):609–640CrossRefGoogle Scholar
  8. Byrne H, Chaplain M (1995) Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol 57(3):461–486CrossRefMATHGoogle Scholar
  9. Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10(3):221–230CrossRefGoogle Scholar
  10. Capasso V, Morale D (2009) Stochastic modelling of tumour-induced angiogenesis. J Math Biol 58(1–2):219–233CrossRefMATHMathSciNetGoogle Scholar
  11. Carmeliet P et al (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389CrossRefGoogle Scholar
  12. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257CrossRefGoogle Scholar
  13. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307CrossRefGoogle Scholar
  14. Chaplain MA, Stuart A (1993) A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. Math Med Biol 10(3):149–168CrossRefMATHGoogle Scholar
  15. Chaplain M (1996) Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math Comput Model 23(6):47–87CrossRefMATHGoogle Scholar
  16. Chaplain MA (2000) Mathematical modelling of angiogenesis. J Neurooncol 50(1–2):37–51CrossRefGoogle Scholar
  17. Chaplain MA, McDougall SR, Anderson A (2006) Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng 8:233–257CrossRefGoogle Scholar
  18. Das A, Lauffenburger D, Asada H, Kamm RD (2010) A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Philos Trans R Soc A Math Phys Eng Sci 368(1921):2937–2960CrossRefMATHMathSciNetGoogle Scholar
  19. d’Onofrio A, Gandolfi A (1999) Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al (1999). Math Biosci 191(2):159–184Google Scholar
  20. Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8(4):210–221CrossRefGoogle Scholar
  21. Edelstein L (1982) The propagation of fungal colonies: a model for tissue growth. J Theor Biol 98(4):679–701CrossRefMathSciNetGoogle Scholar
  22. Erban R, Chapman J, Maini P (2007) A practical guide to stochastic simulations of reaction–diffusion processes. arXiv:0704.1908 (preprint)
  23. Falconer K (2007) Fractal geometry: mathematical foundations and applications. Wiley, New YorkGoogle Scholar
  24. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186CrossRefGoogle Scholar
  25. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–7CrossRefGoogle Scholar
  26. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–30CrossRefGoogle Scholar
  27. Frieboes HB, Jin F, Chuang YL, Wise SM, Lowengrub JS, Cristini V (2010) Three-dimensional multispecies nonlinear tumor growth II: tumor invasion and angiogenesis. J Theor Biol 264(4):1254–1278CrossRefMathSciNetGoogle Scholar
  28. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D et al (2003) Vegf guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177CrossRefGoogle Scholar
  29. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434CrossRefMathSciNetGoogle Scholar
  30. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361CrossRefGoogle Scholar
  31. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121CrossRefGoogle Scholar
  32. Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59(19):4770–4775Google Scholar
  33. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  34. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  35. Henriksson JT, McDermott AM, Bergmanson JP (2009) Dimensions and morphology of the cornea in three strains of mice. Investig Ophthalmol Vis Sci 50(8):3648–3654CrossRefGoogle Scholar
  36. Hillen T, Painter KJ (2009) A users guide to pde models for chemotaxis. J Math Biol 58(1–2):183–217CrossRefMATHMathSciNetGoogle Scholar
  37. Holash J, Wiegand S, Yancopoulos G (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and vegf. Oncogene 18(38):5356–5362CrossRefGoogle Scholar
  38. Holmes M, Sleeman B (2000) A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J Theor Biol 202(2):95–112CrossRefGoogle Scholar
  39. Jackson TL, Byrne HM (2000) A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math Biosci 164(1):17–38CrossRefMATHMathSciNetGoogle Scholar
  40. Jackson T, Zheng X (2010) A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull Math Biol 72(4):830–868CrossRefMATHMathSciNetGoogle Scholar
  41. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62CrossRefGoogle Scholar
  42. Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M (2001a) Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol 63(5):801–863CrossRefGoogle Scholar
  43. Levine HA, Sleeman BD, Nilsen-Hamilton M (2001b) Mathematical modeling of the onset of capillary formation initiating angiogenesis. J Math Biol 42(3):195–238CrossRefMATHMathSciNetGoogle Scholar
  44. Mac Gabhann F, Popel AS (2004) Model of competitive binding of vascular endothelial growth factor and placental growth factor to vegf receptors on endothelial cells. Am J Physiol Heart Circ Physiol 286(1):H153–H164Google Scholar
  45. Mac Gabhann F, Ji JW, Popel AS (2006) Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy. PLoS Comput Biol 2(9):e127Google Scholar
  46. Macklin P, McDougall S, Anderson AR, Chaplain MA, Cristini V, Lowengrub J (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4–5):765–798CrossRefMathSciNetGoogle Scholar
  47. Mantzaris NV, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49(2):111–187CrossRefMATHMathSciNetGoogle Scholar
  48. McDougall SR, Anderson A, Chaplain M, Sherratt J (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64(4):673–702CrossRefGoogle Scholar
  49. McDougall SR, Anderson AR, Chaplain MA (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–589CrossRefMathSciNetGoogle Scholar
  50. Moreira J, Deutsch A (2002) Cellular automaton models of tumor development: a critical review. Adv Complex Syst 5(02n03):247–267CrossRefMATHMathSciNetGoogle Scholar
  51. Norden AD, Drappatz J, Wen PY (2009) Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 5(11):610–620CrossRefGoogle Scholar
  52. Orme M, Chaplain M (1996) A mathematical model of vascular tumour growth and invasion. Math Comput Model 23(10):43–60CrossRefMATHGoogle Scholar
  53. Owen MR, Alarcón T, Maini PK, Byrne HM (2009) Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol 58(4–5):689–721CrossRefMathSciNetGoogle Scholar
  54. Painter KJ, Hillen T (2002) Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q 10(4):501–543MATHMathSciNetGoogle Scholar
  55. Peirce SM (2008) Computational and mathematical modeling of angiogenesis. Microcirculation 15(8):739–751CrossRefGoogle Scholar
  56. Perfahl H, Byrne HM, Chen T, Estrella V, Alarcón T, Lapin A, Gatenby RA, Gillies RJ, Lloyd MC, Maini PK et al (2011) Multiscale modelling of vascular tumour growth in 3d: the roles of domain size and boundary conditions. PloS ONE 6(4):e14,790CrossRefGoogle Scholar
  57. Plank M, Sleeman B (2003) A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biol 20(2):135–181CrossRefMATHGoogle Scholar
  58. Plank M, Sleeman B (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66(6):1785–1819CrossRefMathSciNetGoogle Scholar
  59. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887CrossRefGoogle Scholar
  60. Qutub AA, Mac Gabhann F (2009) Multiscale models of angiogenesis. IEEE Eng Med Biol Mag 28(2):14–31CrossRefGoogle Scholar
  61. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LCM, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Progress Biophys Mol Biol 81(3):177–199CrossRefGoogle Scholar
  62. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674CrossRefGoogle Scholar
  63. Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. Siam Rev 49(2):179–208CrossRefMATHMathSciNetGoogle Scholar
  64. Sachs R, Hlatky L, Hahnfeldt P (2001) Simple ode models of tumor growth and anti-angiogenic or radiation treatment. Math Comput Model 33(12):1297–1305CrossRefMATHMathSciNetGoogle Scholar
  65. Sleeman B, Levine H (2001) Partial differential equations of chemotaxis and angiogenesis. Math Methods Appl Sci 24(6):405–426CrossRefMATHMathSciNetGoogle Scholar
  66. Stevens A, Othmer HG (1997) Aggregation, blowup, and collapse: the abc’s of taxis in reinforced random walks. SIAM J App Math 57(4):1044–1081CrossRefMATHMathSciNetGoogle Scholar
  67. Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152(3):377–403CrossRefGoogle Scholar
  68. Tosin A, Ambrosi D, Preziosi L (2006) Mechanics and chemotaxis in the morphogenesis of vascular networks. Bull Math Biol 68(7):1819–1836CrossRefMathSciNetGoogle Scholar
  69. Travasso RD, Poiré EC, Castro M, Rodrguez-Manzaneque JC, Hernández-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS ONE 6(5):e19,989CrossRefGoogle Scholar
  70. Van Kampen NG (1992) Stochastic Processes in Physics and Chemistry, vol 1. North Holland, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • F. Spill
    • 1
  • P. Guerrero
    • 2
    • 3
  • T. Alarcon
    • 2
    • 4
  • P. K. Maini
    • 5
  • H. M. Byrne
    • 1
    • 6
  1. 1.OCCAM, Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Centre de Recerca MatematicaBellaterraSpain
  3. 3.Department of MathematicsUniversity College LondonLondonUK
  4. 4.Departament de MatemàtiquesUniversitat Atonòma de BarcelonaBellaterraSpain
  5. 5.Wolfson Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK
  6. 6.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations