Skip to main content
Log in

Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

To ensure its sustained growth, a tumour may secrete chemical compounds which cause neighbouring capillaries to form sprouts which then migrate towards it, furnishing the tumour with an increased supply of nutrients. In this paper a mathematical model is presented which describes the migration of capillary sprouts in response to a chemoattractant field set up by a tumour-released angiogenic factor, sometimes termed a tumour angiogenesis factor (TAF). The resulting model admits travelling wave solutions which correspond either to successful neovascularization of the tumour or failure of the tumour to secure a vascular network, and which exhibit many of the characteristic features of angiogenesis. For example, the increasing speed of the vascular front, and the evolution of an increasingly developed vascular network behind the leading capillary tip front (the brush-border effect) are both discernible from the numerical simulations. Through the development and analysis of a simplified caricature model, valuable insight is gained into how the balance between chemotaxis, tip proliferation and tip death affects the tumour's ability to induce a vascular response from neighbouring blood vessels. In particular, it is possible to define the success of angiogenesis in terms of known parameters, thereby providing a potential framework for assessing the viability of tumour neovascularization in terms of measurable quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J. A. and S. Maggelakis. 1990. Diffusion regulated growth characteristics of a spherical prevascular carcinoma.Bull. math. Biol. 52, 549–582.

    MATH  Google Scholar 

  • Ausprunk, D. H., and J. Folkman. 1997. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis.Microvasc. Res. 14, 53–65.

    Article  Google Scholar 

  • Ausprunk, D. H., D. R. Knighton and J. Folkman. 1974. Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study.Dev. Biol. 38, 237.

    Article  Google Scholar 

  • Balding, D. and D. L. S. McElwain. 1985. A mathematical model of tumour-induced capillary growth.J. Theor. Biol. 114, 53–73.

    Article  Google Scholar 

  • Berestycki, H., B. Nicolaenko and B. Scheurer. 1983. Travelling wave solutions to reaction-diffusion systems modelling combustion.Contemporary Mathematics. American Mathematical Society 17, 189–207.

    MATH  MathSciNet  Google Scholar 

  • Birdwell, C. R., G. L. Gospadorowicz and G. L. Nicholson, 1977. Factors from 3T3 cells stimulate proliferation of cultured vascular endothelial cells.Nature (London) 268, 528–531.

    Article  Google Scholar 

  • Chaplain, M. A. J. 1990. Mathematical models for the growth of solid tumours and the tip morphogenesis ofAcetabularia. Ph.D. Thesis, University of Dundee.

  • Chaplain, M. A. J. and A. M. Stuart. 1991. A mathematical model for the diffusion of tumour angiogenesis factor into the surrounding host tissue.IMA J. Math. Appl. Med. Biol. 8, 191–220.

    MATH  Google Scholar 

  • Chaplain, M. A. J. and A. M. Stuart. 1993. A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor.IMA J. Math. Appl. Med. Biol. 10, 149–168.

    MATH  Google Scholar 

  • Deshpande, R. G. and Y. I. Shetna. 1989. Isolation and characterisation of tumour angiogenesis factor from solid tumours and body fluids from cancer patients.Indian J. Med. Res. 90, 241–247.

    Google Scholar 

  • Eddy, H. A. and G. W. Casarett. 1973. Development of the vascular system in the hamster malignant neurolemmoma.Microvasc. Res. 6, 63–82.

    Article  Google Scholar 

  • Edelstein, L. 1982. The propagation of fungal colonies: a model for tissue growth.J. Theor. Biol. 98, 679–701.

    Article  MathSciNet  Google Scholar 

  • Erroi, A. L., P. M. Kumar and S. Kumar. 1986. Effects of a purified low molecular weight tumour angiogenesis factor on cell morphology of bovine brain capillary endothelial cells growing on native collagen substratum.Anticancer Res. 6, 1045–1051.

    Google Scholar 

  • Fife, P. C. 1979. Mathematical aspects of reacting and diffusing systems.Lecture Notes in Biomathematics 28, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Folkman, J. 1974. Tumor angiogenesis.Adv. Cancer Res. 19, 331–358.

    Article  Google Scholar 

  • Folkman, J. 1976. The vascularisation of tumours.Sci. Am. 234, 58–73.

    Article  Google Scholar 

  • Folkman, J. 1986. The vascularization of tumours. InCancer Biology: Readings from Scientific American (Ed. Friedberg, E. C.), pp. 115–124.

  • Folkman, J. and M. Klagsbrun. 1987. Angiogenic factors.Science 235, 442–447.

    Google Scholar 

  • Gimbrone, M. A., R. S. Cotran, S. B. Leapman and J. Folkman. 1974. Tumour growth and neovascularization: an experimental model using the rabbit cornea.J. Natl. Cancer Inst. 52, 413–427.

    Google Scholar 

  • Gross, J., R. G. Azizkhan, C. Biswas, R. R. Bruns, D. S. T. Hseih and J. Folkman. 1981. Inhibition of tumour growth, vascularisation and collagenolysis in the rabbit cornea by medroxyprogesterone.Proc. Natl. Acad. Sci. USA 78, 1176–1180.

    Article  Google Scholar 

  • Ishiwata, I., C. Ishiwata, M. Soma, I. Ono, T. Nakaguchi and H. Ishikawa. 1988. Tumour angiogenic activity of gynecologic tumour cell lines on the chorioallantoic membrane.Gynecol. Oncol. 29, 87–93.

    Article  Google Scholar 

  • Jaffe, A. E., R. L. Nachman, C. G. Becker and C. R. Minick. 1973. Culture of human endothelial cell lines derived from umbilical veins.J. Clin. Invest. 52, 2745.

    Article  Google Scholar 

  • Klagsbrun, M., D. R. Knighton and J. Folkman. 1976. Tumour angiogenesis activity in cells grown in tissue culture.Cancer Res. 36, 110–114.

    Google Scholar 

  • Kumar, P., A. Erroi, A. Sattar and S. Kumar. 1985. Weibel-Palade bodies as a marker for neovascularization induced by tumour and rheumatoid angiogenesis factor.Cancer Res. 45, 4339–4348.

    Google Scholar 

  • Langer, R., H. Conn, J. Vacanti, C. Haudenschild and J. Folkman. 1980. Control of tumour growth in animals by diffusion of an angiogenesis inhibitor.Proc. Natl Acad. Sci. USA 77, 4331–4348.

    Article  Google Scholar 

  • Madri, J. A. and B. M. Pratt. 1986. Endothelial cell-matrix interactions:in vitro models of angiogenesis.J. Histochem. Cytochem. 34, 85.

    Google Scholar 

  • Muthukkaruppan, V. R., L. Kubai and R. Auerbach. 1982. Tumour-induced neovascularization in the mouse eye.J. Natl. Cancer Inst. 69, 699–705.

    Google Scholar 

  • Paku, S. and N. Paweletz. 1991. First steps of tumour-related angiogenesis.Lab. Invest. 65, 334–346.

    Google Scholar 

  • Paweletz, N. and M. Knierim. 1989. Tumour-related angiogenesis.Critical Reviews in Oncology/Hematology 9, 197–242.

    Article  Google Scholar 

  • Rupnick, M. A., C. L. Stokes, S. K. Williams and D. A. Lauffenburger. 1990. Quantitative analysis of human microvessel endothelial cells using a linear under-agarose assay.Lab. Invest. 59, 363–372.

    Google Scholar 

  • Stokes, C. L., M. A. Rupnick, S. K. Williams and D. A. Lauffenburger. 1990. Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor.Lab. Invest. 63, 657–668.

    Google Scholar 

  • Stokes, C. L. and D. A. Lauffenburger. 1991. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis.J. Theor. Biol. 152, 377–403.

    Google Scholar 

  • Stokes, C. L., D. A. Lauffenburger and S. K. Williams. 1991. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement.J. Cell Sci. 99, 419–430.

    Google Scholar 

  • Strydom, D. J., J. W. Fett, L. R. Lobb, E. M. Alderman, J. L. Bethune, J. F. Riordan and B. L. Vallee. 1985. Amino acid sequence of human tumour derived angiogeninBiochemistry 24, 5486–5494.

    Article  Google Scholar 

  • Williams, W. 1980.Partial Differential Equations. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Willmot, N., J. Goldberg, R. Bessent, J. McKillop and C. McArdle. 1991. Abnormal vasculature of solid tumours: significance for microsphere-based targeting strategies.Int. J. Radiat. Biol. 60, 195–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, H.M., Chaplain, M.A.J. Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions. Bltn Mathcal Biology 57, 461–486 (1995). https://doi.org/10.1007/BF02460635

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460635

Keywords

Navigation