Skip to main content

Advertisement

Log in

Reversing glioma malignancy: a new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The role of glioma stem cells (GSCs) in cancer progression is currently debated; however, it is hypothesised that this subpopulation is partially responsible for therapeutic resistance observed in glioblastoma multiforme (GBM). Recent studies have shown that the current treatments not only fail to eliminate the GSC population but even promote GSCs through reprogramming of glioma non-stem cells to stem cells. Since the standard GBM treatment often requires supplementation with adjuvant drugs such as antidepressants, their role in the regulation of the heterogeneous nature of GSCs needs evaluation.

Methods

We examined the effects of imipramine, amitriptyline, fluoxetine, mirtazapine, agomelatine, escitalopram, and temozolomide on the phenotypic signature (CD44, Ki67, Nestin, Sox1, and Sox2 expression) of GSCs isolated from a human T98G cell line. These drugs were examined in several models of hypoxia (1% oxygen, 2.5% oxygen, and a hypoxia-reoxygenation model) as compared to the standard laboratory conditions (20% oxygen).

Results

We report that antidepressant drugs, particularly imipramine and amitriptyline, modulate plasticity, silence the GSC profile, and partially reverse the malignant phenotype of GBM. Moreover, we observed that, in contrast to temozolomide, these tricyclic antidepressants stimulated viability and mitochondrial activity in normal human astrocytes.

Conclusion

The ability of phenotype switching from GSC to non-GSC as stimulated by antidepressants (primarily imipramine and amitriptyline) sheds new light on the heterogeneous nature of GSC, as well as the role of antidepressants in adjuvant GBM therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K (2015) Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2:152–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seymour T, Nowak A, Kakulas F (2015) Targeting aggressive cancer stem cells in glioblastoma. Front Oncol 20:5–159

    Google Scholar 

  3. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  4. Jackson M, Hassiotou F, Nowak A (2015) Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 36:177–185

    Article  CAS  PubMed  Google Scholar 

  5. Laks DR, Visnyei K, Kornblum HI (2010) Brain tumor stem cells as therapeutic targets in models of glioma. Yonsei Med J 51:633–640

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh AK, Arya RK, Maheshwari S, Singh A, Meena S, Pandey P, Dormond O, Datta D (2014) Tumor heterogeneity and cancer stem cell paradigm: updates in concept, controversies and clinical relevance. Int J Cancer 136:1991–2000

    Article  PubMed  Google Scholar 

  7. Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22:457–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Auffinger B, Tobias AL, Han Y, Lee G, Guo D, Dey M, Lesniak MS, Ahmed AU (2014) Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 21:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan K, Yang K, Rich JN (2013) The evolving landscape of glioblastoma stem cells. Curr Opin Neurol 26:701–707

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavare C (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 5:4009–4014

    Article  Google Scholar 

  12. Friedmann-Morvinski D (2014) Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog 19:327–336

    Article  PubMed  Google Scholar 

  13. Bayin NS, Modrek AS, Placantonakis DG (2014) Glioblastoma stem cells: molecular characteristics and therapeutic implications. Stem Cells 26:230–238

    Google Scholar 

  14. Rooney AG, Carson A, Grant R (2010) Depression in cerebral glioma patients: a systematic review of observational studies. J Natl Cancer Inst 103:61–76

    Article  PubMed  Google Scholar 

  15. Pangilinan PH, Kelly BM, Pangilinan JM (2007) Depression in the patient with brain cancer. Commun Oncol 4:533–536

    Article  Google Scholar 

  16. Anderson SI, Taylor R, Whittle IR (1999) Mood disorders in patients after treatment for primary intracranial tumours. Br J Neurosurg 13:480–485

    Article  CAS  PubMed  Google Scholar 

  17. Taphoorn MJ, Schiphorst AK, Snoek FJ (1994) Cognitive functions and quality of life in patients with low-grade gliomas: the impact of radiotherapy. Ann Neurol 36:48–54

    Article  CAS  PubMed  Google Scholar 

  18. Junck L (2004) Supportive management in neuro-oncology: opportunities for patient care, teaching, and research. Curr Opin Neurol 17:649–653

    Article  PubMed  Google Scholar 

  19. Steingart AB (1995) Do antidepressants cause, promote, or inhibit cancers? J Clin Epidemiol 48:1407–1412

    Article  CAS  PubMed  Google Scholar 

  20. Hisaoka K, Koda T, Miyata M, Zensho H, Morinobu S, Ohta M, Yamawaki S (2001) Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 79:25–34

    Article  CAS  PubMed  Google Scholar 

  21. Peer D, Dekel Y, Melikhov D, Margalit R (2004) Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngeneic and in human xenograft mouse tumor models. Cancer Res 15:7562–7569

    Article  Google Scholar 

  22. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 15:1203–1217

    Article  Google Scholar 

  23. Brown WA, Rosdolsky M (2015) The clinical discovery of imipramine. Am J Psychiatry 172:426–429

    Article  PubMed  Google Scholar 

  24. Magyar M, Csépány É, Gyüre T, Bozsik G, Bereczki D, Ertsey C (2015) Tricyclic antidepressant therapy in headache. Neuropsychopharmacol Hung 17(4):177–182

    PubMed  Google Scholar 

  25. Magni LR, Purgato M, Gastaldon C, Papola D, Furukawa TA, Cipriani A, Barbui C (2013) Fluoxetine versus other types of pharmacotherapy for depression. Cochrane Database Syst Rev 17:CD004185

    Google Scholar 

  26. Olia M, Fotineas A, Nikolaou K, Rizos E, Kantzou I, Zygogianni A, Kouvaris J, Platoni K, Pantelakos P, Sarris G, Kelekis N, Kouloulias V (2014) Radiotherapy combined with daily escitalopram in patients with painful bone metastasis: clinical evaluation and quality of life measurements. J BUON 19:819–825

    Google Scholar 

  27. Ozsoy S, Besirli A, Unal D, Abdulrezzak U, Orhan O (2015) The association between depression, weight loss and leptin/ghrelin levels in male patients with head and neck cancer undergoing radiotherapy. Gen Hosp Psychiatry 37:31–35

    Article  PubMed  Google Scholar 

  28. Kaminski-Hartenthaler A, Nussbaumer B, Forneris CA, Morgan LC, Gaynes BN, Sonis JH, Greenblatt A, Wipplinger J, Lux LJ, Winkler D, Van Noord MG, Hofmann J, Gartlehner G (2015) Melatonin and agomelatine for preventing seasonal affective disorder. Cochrane Database Syst Rev 11:11

    Google Scholar 

  29. Shen W, Hu JA, Zheng JS (2014) Mechanism of temozolomide-induced antitumour effects on glioma cells. J Int Med Res 42:164–172

    Article  CAS  PubMed  Google Scholar 

  30. Brown DV, Daniel PM, D’Abaco GM, Gogos A, Ng W, Morokoff AP, Mantamadiotis T (2015) Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme. Oncotarget 20:6267–6280

    Article  Google Scholar 

  31. Lv D, Lu L, Hu Z, Fei Z, Liu M, Wei L, Xu J (2017) Nestin expression is associated with poor clinicopathological features and prognosis in glioma patients: an association study and meta-analysis. Mol Neurobiol 54(1):727–735

  32. Sabit H, Nakada M, Furuta T, Watanabe T, Hayashi Y, Sato H, Kato Y, Hamada J (2014) Characterizing invading glioma cells based on IDH1-R132H and Ki-67 immunofluorescence. J Brain Tumor Pathol 31:242–246

    Article  CAS  Google Scholar 

  33. Fang X, Yoon JG, Li L, Yu W, Shao J, Hua D, Zheng S, Hood L, Goodledt DR, Foltz G, Lin B (2011) The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genom 6(12):11

    Article  Google Scholar 

  34. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    Article  CAS  PubMed  Google Scholar 

  35. Bielecka AM, Obuchowicz E (2014) Chronic physiological hypoxia and high glucose concentration promote resistance of T98G glioblastoma cell line to temozolomide. Drug Des 3:1–10

    CAS  Google Scholar 

  36. Richichi C, Osti D, Del Bene M, Fornasari L, Patane M, Pollo B, DiMeco F, Giuliana Pelicci G (2016) Tumour-initiating cell frequency is relevant for glioblastoma aggressiveness. Oncotarget 7:71491–71503

  37. Miconi G, Palumbo P, Dehcordi SR, La Torre C, Lombardi F, Evtoski Z, Cimini AM, Galzio R, Cifone MG, Cinque B (2015) Immunophenotypic characterization of glioma stem cells: correlation with clinical outcome. J Cell Biochem 116:864–876

    Article  CAS  PubMed  Google Scholar 

  38. Sl Seide, Garvalov BK, Wirta V, Stechow LV, Schänzer A, Meletis K, Wolter M, Sommerlad D, Henze AM, Nistér M, Reifenberger G, Lundeberg J, Frisén J, Acker T (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain 133:983–995

    Article  Google Scholar 

  39. Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ (2012) The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells. Neoplasia 14:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Codici E, Enciu AM, Popescu ID, Mihai S, Tanase C (2016) Glioma stem cells and their microenvironments: providers of challenging therapeutic targets. Stem Cell Int 2016(18):1–20. doi:10.1155/2016/5728438

  41. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathorsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2:501–513

    Article  Google Scholar 

  42. Filatova A, Acker T, Garvalov BK (2013) The cancer stem cell niche(s): the crosstalk between stem cells and their microenvironment. Biochim Biophys Acta 1830:2496–2508

    Article  CAS  PubMed  Google Scholar 

  43. Frick LR, Rapanelli M (2013) Antidepressants: influence on cancer and immunity? Life Sci 21:525–532

    Article  Google Scholar 

  44. Kast RE (2015) Agomelatine and ramelton as treatment adjuncts in glioblastoma and other M1- or M2 expressing cancers. Contemp Oncol 19:157–162

    CAS  Google Scholar 

  45. Jiao JT, Sun J, Ma JF, Dai MC, Huang J, Jiang C, Wang C, Cheng C, Shao JF (2015) Relationship between inflammatory cytokines and risk of depression, and effect of depression on the prognosis of high grade glioma patients. J Neurooncol 124:475–484

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Bielecka-Wajdman.

Ethics declarations

Funding

This work was supported by a Grant from the School of Medicine, Medical University of Silesia, Katowice, Poland (KNW-2-016/N/4/K).

Conflict of interest

All authors declare no conflicts of interest. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No human participants were used in this study.

Additional information

This work was supported by a Grant from the School of Medicine, Medical University of Silesia, Katowice, Poland (KNW-2-016/N/4/K).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bielecka-Wajdman, A.M., Lesiak, M., Ludyga, T. et al. Reversing glioma malignancy: a new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme. Cancer Chemother Pharmacol 79, 1249–1256 (2017). https://doi.org/10.1007/s00280-017-3329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3329-2

Keywords

Navigation