Skip to main content

Advertisement

Log in

Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time?

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the second most common cause of cancer death worldwide. Current treatment options for patients with intermediate and advanced HCC are limited, and there is an unmet need for novel therapeutic approaches. HCC is an attractive target for immunomodulation therapy, since it arises in an inflammatory milieu due to hepatitis B and C infections and cirrhosis. However, a major barrier to the development and success of immunotherapy in patients with HCC is the liver’s inherent immunosuppressive function. Recent advances in the field of cancer immunology allowed further characterization of immune cell subsets and function, and created new opportunities for therapeutic modulation of the immune system. In this review, we present the different immune cell subsets involved in potential immune modulation of HCC, discuss their function and clinical relevance, review the variety of immune therapeutic agents currently under investigation in clinical trials, and outline future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CIK:

Cytokine-induced killer

DFS:

Disease-free survival

GPC-3:

Glypican-3

HCC:

Hepatocellular carcinoma

KC:

Kupffer cells

LAG-3:

Lymphocyte activation gene 3

MDSC:

Myeloid-derived suppressor cells

NKT:

Natural killer T

OS:

Overall survival

PR:

Partial response

SD:

Stable disease

T-reg:

T-regulatory

TACE:

Transarterial chemoembolization

Tim-3:

T-cell immunoglobulin mucin 3

TME:

Tumor microenvironment

References

  1. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264 e1–1273 e1. doi:10.1053/j.gastro.2011.12.061

    Article  Google Scholar 

  2. Korangy F, Hochst B, Manns MP, Greten TF (2010) Immune responses in hepatocellular carcinoma. Dig Dis 28(1):150–154. doi:10.1159/000282079

    Article  PubMed  CAS  Google Scholar 

  3. Waller LP, Deshpande V, Pyrsopoulos N (2015) Hepatocellular carcinoma: a comprehensive review. World J Hepatol 7(26):2648–2663. doi:10.4254/wjh.v7.i26.2648

    Article  PubMed  PubMed Central  Google Scholar 

  4. Greten TF, Duffy AG, Korangy F (2013) Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res 19(24):6678–6685. doi:10.1158/1078-0432.CCR-13-1721

    Article  CAS  PubMed  Google Scholar 

  5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, Group SIS (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390. doi:10.1056/NEJMoa0708857

    Article  CAS  PubMed  Google Scholar 

  6. Khan H, Pillarisetty VG, Katz SC (2014) The prognostic value of liver tumor T cell infiltrates. J Surg Res 191(1):189–195. doi:10.1016/j.jss.2014.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cantor HM, Dumont AE (1967) Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 215(5102):744–745

    Article  CAS  PubMed  Google Scholar 

  8. Chan T, Wiltrout RH, Weiss JM (2011) Immunotherapeutic modulation of the suppressive liver and tumor microenvironments. Int Immunopharmacol 11(7):879–889. doi:10.1016/j.intimp.2010.12.024

    Article  CAS  PubMed  Google Scholar 

  9. Zhao HQ, Li WM, Lu ZQ, Yao YM (2014) Roles of Tregs in development of hepatocellular carcinoma: a meta-analysis. World J Gastroenterol 20(24):7971–7978. doi:10.3748/wjg.v20.i24.7971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pardee AD, Butterfield LH (2012) Immunotherapy of hepatocellular carcinoma: unique challenges and clinical opportunities. Oncoimmunology 1(1):48–55. doi:10.4161/onci.1.1.18344

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ilkovitch D, Lopez DM (2009) The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 69(13):5514–5521. doi:10.1158/0008-5472.CAN-08-4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50(3):799–807. doi:10.1002/hep.23054

    Article  CAS  PubMed  Google Scholar 

  13. Medina-Echeverz J, Eggert T, Han M, Greten TF (2015) Hepatic myeloid-derived suppressor cells in cancer. Cancer Immunol Immunother 64(8):931–940. doi:10.1007/s00262-015-1736-y

    Article  CAS  PubMed  Google Scholar 

  14. Draghiciu O, Lubbers J, Nijman HW, Daemen T (2015) Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4(1):e954829. doi:10.4161/21624011.2014.954829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77. doi:10.1158/0008-5472.CAN-09-2587

    Article  CAS  PubMed  Google Scholar 

  16. Lu T, Gabrilovich DI (2012) Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment. Clin Cancer Res 18(18):4877–4882. doi:10.1158/1078-0432.CCR-11-2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243. doi:10.1053/j.gastro.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  18. Mizukoshi E, Yamashita T, Arai K, Terashima T, Kitahara M, Nakagawa H, Iida N, Fushimi K, Kaneko S (2016) Myeloid-derived suppressor cells correlate with patient outcomes in hepatic arterial infusion chemotherapy for hepatocellular carcinoma. Cancer Immunol Immunother 65(6):715–725. doi:10.1007/s00262-016-1837-2

    Article  CAS  PubMed  Google Scholar 

  19. Wang D, An G, Xie S, Yao Y, Feng G (2016) The clinical and prognostic significance of CD14HLA-DR myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy. Tumour Biol 37(8):10427–10433. doi:10.1007/s13277-016-4916-2

    Article  CAS  PubMed  Google Scholar 

  20. Ju C, Tacke F (2016) Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 13(3):316–327. doi:10.1038/cmi.2015.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14(10):996–1006. doi:10.1038/ni.2691

    Article  CAS  PubMed  Google Scholar 

  22. Yan M-L (2010) Inhibition of allogeneic T-cell response by Kupffer cells expressing indoleamine 2,3-dioxygenase. World J Gastroenterol 16(5):636. doi:10.3748/wjg.v16.i5.636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G (1995) Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 22(2):226–229

    Article  CAS  PubMed  Google Scholar 

  24. Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A (2012) The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 72(16):3977–3986. doi:10.1158/0008-5472.CAN-12-0938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu K, Kryczek I, Chen L, Zou W, Welling TH (2009) Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res 69(20):8067–8075. doi:10.1158/0008-5472.CAN-09-0901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao Q, Xiao X, Wu Y, Wei Y, Zhu LY, Zhou J, Kuang DM (2011) Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol 41(8):2314–2322. doi:10.1002/eji.201041282

    Article  CAS  PubMed  Google Scholar 

  27. Yan BC, Gong C, Song J, Krausz T, Tretiakova M, Hyjek E, Al-Ahmadie H, Alves V, Xiao SY, Anders RA, Hart JA (2010) Arginase-1: a new immunohistochemical marker of hepatocytes and hepatocellular neoplasms. Am J Surg Pathol 34(8):1147–1154. doi:10.1097/PAS.0b013e3181e5dffa

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sang W, Zhang W, Cui W, Li X, Abulajiang G, Li Q (2015) Arginase-1 is a more sensitive marker than HepPar-1 and AFP in differential diagnosis of hepatocellular carcinoma from nonhepatocellular carcinoma. Tumour Biol 36(5):3881–3886. doi:10.1007/s13277-014-3030-6

    Article  CAS  PubMed  Google Scholar 

  29. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. doi:10.1146/annurev.immunol.21.120601.141122

    Article  CAS  PubMed  Google Scholar 

  30. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25(18):2586–2593. doi:10.1200/JCO.2006.09.4565

    Article  PubMed  Google Scholar 

  31. Piccirillo CA, Tritt M, Sgouroudis E, Albanese A, Pyzik M, Hay V (2005) Control of type 1 autoimmune diabetes by naturally occurring CD4+ CD25+ regulatory T lymphocytes in neonatal NOD mice. Ann N Y Acad Sci 1051:72–87. doi:10.1196/annals.1361.048

    Article  CAS  PubMed  Google Scholar 

  32. Yang XH, Yamagiwa S, Ichida T, Matsuda Y, Sugahara S, Watanabe H, Sato Y, Abo T, Horwitz DA, Aoyagi Y (2006) Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol 45(2):254–262. doi:10.1016/j.jhep.2006.01.036

    Article  CAS  PubMed  Google Scholar 

  33. Han Y, Yang Y, Chen Z, Jiang Z, Gu Y, Liu Y, Xu S, Lin C, Pan Z, Zhou W, Cao X (2014) Human hepatocellular carcinoma-infiltrating CD4(+)CD69(+)Foxp3(-) regulatory T cell suppresses T cell response via membrane-bound TGF-beta1. J Mol Med (Berl) 92(5):539–550. doi:10.1007/s00109-014-1143-4

    Article  CAS  Google Scholar 

  34. Nishikawa H, Sakaguchi S (2014) Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 27:1–7. doi:10.1016/j.coi.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  35. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y, Fu YX, Wang FS (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132(7):2328–2339. doi:10.1053/j.gastro.2007.03.102

    Article  PubMed  Google Scholar 

  36. Unitt E, Rushbrook SM, Marshall A, Davies S, Gibbs P, Morris LS, Coleman N, Alexander GJ (2005) Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 41(4):722–730. doi:10.1002/hep.20644

    Article  CAS  PubMed  Google Scholar 

  37. Chaudhary B, Elkord E (2016) Regulatory T Cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel). doi:10.3390/vaccines4030028

    Google Scholar 

  38. Sauer AV, Brigida I, Carriglio N, Hernandez RJ, Scaramuzza S, Clavenna D, Sanvito F, Poliani PL, Gagliani N, Carlucci F, Tabucchi A, Roncarolo MG, Traggiai E, Villa A, Aiuti A (2012) Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood 119(6):1428–1439. doi:10.1182/blood-2011-07-366781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paust S, Lu L, McCarty N, Cantor H (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101(28):10398–10403. doi:10.1073/pnas.0403342101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, Shi M, Zhang H, Yang Y, Wu H, Tien P, Wang FS (2008) Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 129(3):428–437. doi:10.1016/j.clim.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  41. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65(6):2457–2464. doi:10.1158/0008-5472.CAN-04-3232

    Article  CAS  PubMed  Google Scholar 

  42. Zhang HH, Mei MH, Fei R, Liu F, Wang JH, Liao WJ, Qin LL, Wei L, Chen HS (2010) Regulatory T cells in chronic hepatitis B patients affect the immunopathogenesis of hepatocellular carcinoma by suppressing the anti-tumour immune responses. J Viral Hepat 17(Suppl 1):34–43. doi:10.1111/j.1365-2893.2010.01269.x

    Article  PubMed  Google Scholar 

  43. Miroux C, Vausselin T, Delhem N (2010) Regulatory T cells in HBV and HCV liver diseases: implication of regulatory T lymphocytes in the control of immune response. Expert Opin Biol Ther 10(11):1563–1572. doi:10.1517/14712598.2010.529125

    Article  CAS  PubMed  Google Scholar 

  44. Chen KJ, Zhou L, Xie HY, Ahmed TE, Feng XW, Zheng SS (2012) Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection. Med Oncol 29(3):1817–1826. doi:10.1007/s12032-011-0006-x

    Article  PubMed  Google Scholar 

  45. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13(3):902–911. doi:10.1158/1078-0432.CCR-06-2363

    Article  CAS  PubMed  Google Scholar 

  46. Sasaki A, Tanaka F, Mimori K, Inoue H, Kai S, Shibata K, Ohta M, Kitano S, Mori M (2008) Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma. Eur J Surg Oncol 34(2):173–179. doi:10.1016/j.ejso.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Liu T, Tang W, Deng B, Chen Y, Zhu J, Shen X (2016) Hepatocellular carcinoma cells induce regulatory T Cells and lead to poor prognosis via production of transforming growth factor-beta1. Cell Physiol Biochem 38(1):306–318. doi:10.1159/000438631

    Article  CAS  PubMed  Google Scholar 

  48. Yang ZQ, Yang ZY, Zhang LD, Ping B, Wang SG, Ma KS, Li XW, Dong JH (2010) Increased liver-infiltrating CD8+ FoxP3+ regulatory T cells are associated with tumor stage in hepatocellular carcinoma patients. Hum Immunol 71(12):1180–1186. doi:10.1016/j.humimm.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  49. Salgado R, Denkert C, Campbell C, Savas P, Nucifero P, Aura C, de Azambuja E, Eidtmann H, Ellis CE, Baselga J, Piccart-Gebhart MJ, Michiels S, Bradbury I, Sotiriou C, Loi S (2015) Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a Secondary analysis of the NeoALTTO trial. JAMA Oncol 1(4):448–454. doi:10.1001/jamaoncol.2015.0830

    Article  PubMed  PubMed Central  Google Scholar 

  50. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A, Zlobec I, Berger A, Bifulco C, Botti G, Tatangelo F, Britten CM, Kreiter S, Chouchane L, Delrio P, Arndt H, Asslaber M, Maio M, Masucci GV, Mihm M, Vidal-Vanaclocha F, Allison JP, Gnjatic S, Hakansson L, Huber C, Singh-Jasuja H, Ottensmeier C, Zwierzina H, Laghi L, Grizzi F, Ohashi PS, Shaw PA, Clarke BA, Wouters BG, Kawakami Y, Hazama S, Okuno K, Wang E, O’Donnell-Tormey J, Lagorce C, Pawelec G, Nishimura MI, Hawkins R, Lapointe R, Lundqvist A, Khleif SN, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Palmqvist R, Nagtegaal ID, Wang Y, D’Arrigo C, Kopetz S, Sinicrope FA, Trinchieri G, Gajewski TF, Ascierto PA, Fox BA (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205. doi:10.1186/1479-5876-10-205

    Article  PubMed  PubMed Central  Google Scholar 

  51. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26(2):259–271. doi:10.1093/annonc/mdu450

    Article  CAS  PubMed  Google Scholar 

  52. Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, Patterson JW, Slingluff CL Jr (2012) Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 72(5):1070–1080. doi:10.1158/0008-5472.CAN-11-3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun C, Xu J, Song J, Liu C, Wang J, Weng C, Sun H, Wei H, Xiao W, Sun R, Tian Z (2015) The predictive value of centre tumour CD8+ T cells in patients with hepatocellular carcinoma: comparison with Immunoscore. Oncotarget 6(34):35602–35615. doi:10.18632/oncotarget.5801

    PubMed  PubMed Central  Google Scholar 

  54. Hiroishi K, Eguchi J, Baba T, Shimazaki T, Ishii S, Hiraide A, Sakaki M, Doi H, Uozumi S, Omori R, Matsumura T, Yanagawa T, Ito T, Imawari M (2010) Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 45(4):451–458. doi:10.1007/s00535-009-0155-2

    Article  CAS  PubMed  Google Scholar 

  55. Cicinnati VR, Zhang X, Yu Z, Ferencik S, Schmitz KJ, Dworacki G, Kaczmarek E, Oldhafer K, Frilling A, Baba HA, Schmid KW, Grosse-Wilde H, Broelsch CE, DeLeo AB, Gerken G, Beckebaum S (2006) Increased frequencies of CD8+ T lymphocytes recognizing wild-type p53-derived epitopes in peripheral blood correlate with presence of epitope loss tumor variants in patients with hepatocellular carcinoma. Int J Cancer 119(12):2851–2860. doi:10.1002/ijc.22251

    Article  CAS  PubMed  Google Scholar 

  56. Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, Qin LL, Fei R, Mei MH, Leng XS, Gnjatic S, Ritter G, Simpson AJ, Old LJ, Chen WF (2004) The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res 10(20):6946–6955. doi:10.1158/1078-0432.CCR-04-0502

    Article  CAS  PubMed  Google Scholar 

  57. Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y, Kagaya T, Yamashita T, Honda M, Kaneko S (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53(4):1206–1216. doi:10.1002/hep.24149

    Article  CAS  PubMed  Google Scholar 

  58. Sayem MA, Tomita Y, Yuno A, Hirayama M, Irie A, Tsukamoto H, Senju S, Yuba E, Yoshikawa T, Kono K, Nakatsura T, Nishimura Y (2016) Identification of glypican-3-derived long peptides activating both CD8 and CD4 T cells; prolonged overall survival in cancer patients with Th cell response. Oncoimmunology 5(1):e1062209. doi:10.1080/2162402X.2015.1062209

    Article  PubMed  CAS  Google Scholar 

  59. Wang Q, Luan W, Warren L, Fiel MI, Blank S, Kadri H, Mandeli J, Hiotis SP (2016) Prognostic role of immune cells in hepatitis B-associated hepatocellular carcinoma following surgical resection depends on their localization and tumor size. J Immunother 39(1):36–44. doi:10.1097/CJI.0000000000000104

    Article  CAS  PubMed  Google Scholar 

  60. Huang Y, Wang FM, Wang T, Wang YJ, Zhu ZY, Gao YT, Du Z (2012) Tumor-infiltrating FoxP3+ Tregs and CD8+ T cells affect the prognosis of hepatocellular carcinoma patients. Digestion 86(4):329–337. doi:10.1159/000342801

    Article  CAS  PubMed  Google Scholar 

  61. Wang F, Jing X, Li G, Wang T, Yang B, Zhu Z, Gao Y, Zhang Q, Yang Y, Wang Y, Wang P, Du Z (2012) Foxp3+ regulatory T cells are associated with the natural history of chronic hepatitis B and poor prognosis of hepatocellular carcinoma. Liver Int 32(4):644–655. doi:10.1111/j.1478-3231.2011.02675.x

    Article  CAS  PubMed  Google Scholar 

  62. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135. doi:10.1155/2012/925135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, Stroncek DF, Terabe M, Kapoor V, ElGindi M, Han M, Thornton AM, Zhang H, Egger M, Luo J, Felsher DW, McVicar DW, Weber A, Heikenwalder M, Greten TF (2016) NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531(7593):253–257. doi:10.1038/nature16969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fu J, Zhang Z, Zhou L, Qi Z, Xing S, Lv J, Shi J, Fu B, Liu Z, Zhang JY, Jin L, Zhao Y, Lau GK, Zhao J, Wang FS (2013) Impairment of CD4+ cytotoxic T cells predicts poor survival and high recurrence rates in patients with hepatocellular carcinoma. Hepatology 58(1):139–149. doi:10.1002/hep.26054

    Article  CAS  PubMed  Google Scholar 

  65. Cao DY, Yang JY, Yue SQ, Tao KS, Song ZS, Wang DS, Yang YL, Dou KF (2009) Comparative analysis of DC fused with allogeneic hepatocellular carcinoma cell line HepG2 and autologous tumor cells as potential cancer vaccines against hepatocellular carcinoma. Cell Immunol 259(1):13–20. doi:10.1016/j.cellimm.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  66. Shibolet O, Alper R, Zlotogarov L, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y (2003) NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer 106(2):236–243. doi:10.1002/ijc.11201

    Article  CAS  PubMed  Google Scholar 

  67. Zhang CD, Wang JN, Sui BQ, Zeng YJ, Chen JQ, Dai DQ (2016) Prognostic and predictive model for stage II colon cancer patients with nonemergent surgery: who should receive adjuvant chemotherapy? Medicine 95(1):e2190. doi:10.1097/MD.0000000000002190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457(7229):557–561. doi:10.1038/nature07665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Subleski JJ, Hall VL, Back TC, Ortaldo JR, Wiltrout RH (2006) Enhanced antitumor response by divergent modulation of natural killer and natural killer T cells in the liver. Cancer Res 66(22):11005–11012. doi:10.1158/0008-5472.CAN-06-0811

    Article  CAS  PubMed  Google Scholar 

  70. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49. doi:10.1126/science.1198687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vermijlen D, Seynaeve C, Luo D, Kruhoffer M, Eizirik DL, Orntoft TF, Wisse E (2004) High-density oligonucleotide array analysis reveals extensive differences between freshly isolated blood and hepatic natural killer cells. Eur J Immunol 34(9):2529–2540. doi:10.1002/eji.200324712

    Article  CAS  PubMed  Google Scholar 

  72. Gong J, Fang L, Liu R, Wang Y, Xing J, Chen Y, Zhuang R, Zhang Y, Zhang C, Yang A, Zhang X, Jin B, Chen L (2014) UPR decreases CD226 ligand CD155 expression and sensitivity to NK cell-mediated cytotoxicity in hepatoma cells. Eur J Immunol 44(12):3758–3767. doi:10.1002/eji.201444574

    Article  CAS  PubMed  Google Scholar 

  73. Qu P, Huang X, Zhou X, Lu Z, Liu F, Shi Z, Lu L, Wu Y, Chen Y (2015) Loss of CD155 expression predicts poor prognosis in hepatocellular carcinoma. Histopathology 66(5):706–714. doi:10.1111/his.12584

    Article  PubMed  Google Scholar 

  74. Wongkajornsilp A, Numchaisermsuk N, Sa-Ngiamsuntorn K, Akarasereenont P, Wamanuttajinda V, Kasetsinsombat K, Duangsa-Ard S, Laohapan T, Maneechotesuwan K (2016) Effects of the Ayurved Siriraj Wattana recipe on functional and phenotypic characterization of cytokine-induced killer cells and dendritic cells in vitro. BMC Complement Altern Med 16(1):489. doi:10.1186/s12906-016-1480-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Margalit M, Shibolet O, Klein A, Elinav E, Alper R, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y (2005) Suppression of hepatocellular carcinoma by transplantation of ex vivo immune-modulated NKT lymphocytes. Int J Cancer 115(3):443–449. doi:10.1002/ijc.20889

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Z, Zhang JY, Wherry EJ, Jin B, Xu B, Zou ZS, Zhang SY, Li BS, Wang HF, Wu H, Lau GK, Fu YX, Wang FS (2008) Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterology 134(7):1938–1949. doi:10.1053/j.gastro.2008.03.037 1949.e1–3

    Article  PubMed  Google Scholar 

  77. Larrubia JR (2009) Costimulatory molecule programmed death-1 in the cytotoxic response during chronic hepatitis C. World J Gastroenterol 15(41):5129. doi:10.3748/wjg.15.5129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, Yang YP, Tien P, Wang FS (2011) PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer 128(4):887–896. doi:10.1002/ijc.25397

    Article  CAS  PubMed  Google Scholar 

  79. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, Xu Y, Fan J (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15(3):971–979. doi:10.1158/1078-0432.CCR-08-1608

    Article  CAS  PubMed  Google Scholar 

  80. Umemoto Y, Okano S, Matsumoto Y, Nakagawara H, Matono R, Yoshiya S, Yamashita Y, Yoshizumi T, Ikegami T, Soejima Y, Harada M, Aishima S, Oda Y, Shirabe K, Maehara Y (2015) Prognostic impact of programmed cell death 1 ligand 1 expression in human leukocyte antigen class I-positive hepatocellular carcinoma after curative hepatectomy. J Gastroenterol 50(1):65–75. doi:10.1007/s00535-014-0933-3

    Article  CAS  PubMed  Google Scholar 

  81. Riaz N, Morris L, Havel JJ, Makarov V, Desrichard A, Chan TA (2016) The role of neoantigens in the response to immune checkpoint blockade. Int Immunol 28(8):411–419. doi:10.1093/intimm/dxw019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, Lin C, Pan Z, Yu Y, Jiang M, Zhou W, Cao X (2014) Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 59(2):567–579. doi:10.1002/hep.26694

    Article  CAS  PubMed  Google Scholar 

  83. Sierro S, Romero P, Speiser DE (2011) The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin Ther Targets 15(1):91–101. doi:10.1517/14712598.2011.540563

    Article  CAS  PubMed  Google Scholar 

  84. Li N, Wang Y, Forbes K, Vignali KM, Heale BS, Saftig P, Hartmann D, Black RA, Rossi JJ, Blobel CP, Dempsey PJ, Workman CJ, Vignali DA (2007) Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO J 26(2):494–504. doi:10.1038/sj.emboj.7601520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Workman CJ, Vignali DA (2005) Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol 174(2):688–695

    Article  CAS  PubMed  Google Scholar 

  86. Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E (2015) Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 3(4):412–423. doi:10.1158/2326-6066.CIR-14-0150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44(5):989–1004. doi:10.1016/j.immuni.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Workman CJ, Dugger KJ, Vignali DA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169(10):5392–5395

    Article  CAS  PubMed  Google Scholar 

  89. Li FJ, Zhang Y, Jin GX, Yao L, Wu DQ (2013) Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett 150(1–2):116–122. doi:10.1016/j.imlet.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  90. Ikushima H, Miyazono K (2011) Biology of transforming growth factor-beta signaling. Curr Pharm Biotechnol 12(12):2099–2107

    Article  CAS  PubMed  Google Scholar 

  91. Lin S, Xie J, Gong T, Shi S, Zhang T, Fu N, Ye L, Wang M, Lin Y (2015) TGFbeta signalling pathway regulates angiogenesis by endothelial cells, in an adipose-derived stromal cell/endothelial cell co-culture 3D gel model. Cell Prolif 48(6):729–737. doi:10.1111/cpr.12222

    Article  CAS  PubMed  Google Scholar 

  92. Mouri H, Sakaguchi K, Sawayama T, Senoh T, Ohta T, Nishimura M, Fujiwara A, Terao M, Shiratori Y, Tsuji T (2002) Suppressive effects of transforming growth factor-beta1 produced by hepatocellular carcinoma cell lines on interferon-gamma production by peripheral blood mononuclear cells. Acta Med Okayama 56(6):309–315

    CAS  PubMed  Google Scholar 

  93. Park NR, Cha JH, Jang JW, Bae SH, Jang B, Kim JH, Hur W, Choi JY, Yoon SK (2016) Synergistic effects of CD44 and TGF-beta1 through AKT/GSK-3beta/beta-catenin signaling during epithelial-mesenchymal transition in liver cancer cells. Biochem Biophys Res Commun 477(4):568–574. doi:10.1016/j.bbrc.2016.06.077

    Article  CAS  PubMed  Google Scholar 

  94. Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, Wong YC, Guan XY, Man K, Chau KL, Fan ST (2006) Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 12(18):5369–5376. doi:10.1158/1078-0432.CCR-05-2722

    Article  CAS  PubMed  Google Scholar 

  95. Ji F, Fu SJ, Shen SL, Zhang LJ, Cao QH, Li SQ, Peng BG, Liang LJ, Hua YP (2015) The prognostic value of combined TGF-beta1 and ELF in hepatocellular carcinoma. BMC Cancer 15:116. doi:10.1186/s12885-015-1127-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lin TH, Shao YY, Chan SY, Huang CY, Hsu CH, Cheng AL (2015) High serum transforming growth factor-beta1 levels predict outcome in hepatocellular carcinoma patients treated with sorafenib. Clin Cancer Res 21(16):3678–3684. doi:10.1158/1078-0432.CCR-14-1954

    Article  CAS  PubMed  Google Scholar 

  97. Toubaji A, Achtar M, Provenzano M, Herrin VE, Behrens R, Hamilton M, Bernstein S, Venzon D, Gause B, Marincola F, Khleif SN (2008) Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother 57(9):1413–1420. doi:10.1007/s00262-008-0477-6

    Article  CAS  PubMed  Google Scholar 

  98. Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC, Kong MS, Liang DC, Shau WY, Chen DS (1997) Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan childhood hepatoma study group. N Engl J Med 336(26):1855–1859. doi:10.1056/nejm199706263362602

    Article  CAS  PubMed  Google Scholar 

  99. Wang XG, Revskaya E, Bryan RA, Strickler HD, Burk RD, Casadevall A, Dadachova E (2007) Treating cancer as an infectious disease–viral antigens as novel targets for treatment and potential prevention of tumors of viral etiology. PLoS One 2(10):e1114. doi:10.1371/journal.pone.0001114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Rahma OE, Khleif SN (2011) Therapeutic vaccines for gastrointestinal cancers. Gastroenterol Hepatol (N Y) 7(8):517–564

    Google Scholar 

  101. Sun Z, Zhu Y, Xia J, Sawakami T, Kokudo N, Zhang N (2015) Status of and prospects for cancer vaccines against hepatocellular carcinoma in clinical trials. Biosci Trends 10(2):85–91. doi:10.5582/bst.2015.01128

    Article  PubMed  Google Scholar 

  102. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, Filmus J (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125(1):89–97

    Article  CAS  PubMed  Google Scholar 

  103. Fu SJ, Qi CY, Xiao WK, Li SQ, Peng BG, Liang LJ (2013) Glypican-3 is a potential prognostic biomarker for hepatocellular carcinoma after curative resection. Surgery 154(3):536–544. doi:10.1016/j.surg.2013.02.014

    Article  PubMed  Google Scholar 

  104. Sawada Y, Yoshikawa T, Nobuoka D, Shirakawa H, Kuronuma T, Motomura Y, Mizuno S, Ishii H, Nakachi K, Konishi M, Nakagohri T, Takahashi S, Gotohda N, Takayama T, Yamao K, Uesaka K, Furuse J, Kinoshita T, Nakatsura T (2012) Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res 18(13):3686–3696. doi:10.1158/1078-0432.CCR-11-3044

    Article  CAS  PubMed  Google Scholar 

  105. Sawada Y, Yoshikawa T, Ofuji K, Yoshimura M, Tsuchiya N, Takahashi M, Nobuoka D, Gotohda N, Takahashi S, Kato Y, Konishi M, Kinoshita T, Ikeda M, Nakachi K, Yamazaki N, Mizuno S, Takayama T, Yamao K, Uesaka K, Furuse J, Endo I, Nakatsura T (2016) Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncoimmunology 5(5):e1129483. doi:10.1080/2162402X.2015.1129483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, Steven NM, Kerr DJ, Young LS, Adams DH (2009) A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 49(1):124–132. doi:10.1002/hep.22626

    Article  PubMed  Google Scholar 

  107. Xu L, Wang J, Kim Y, Shuang ZY, Zhang YJ, Lao XM, Li YQ, Chen MS, Pawlik TM, Xia JC, Li SP, Lau WY (2016) A randomized controlled trial on patients with or without adjuvant autologous cytokine-induced killer cells after curative resection for hepatocellular carcinoma. Oncoimmunology 5(3):e1083671. doi:10.1080/2162402X.2015.1083671

    Article  PubMed  Google Scholar 

  108. Gerry A, Sanderson J, Maroto M, Ferronha T, Ranganathan S, Norry E, Pandite L, Amado RG, Jakobsen BK (2016) Targeting alpha fetoprotein with TCR engineered T cells in HCC. ASCO Annual Meeting 2016. J Clin Oncol 34 (suppl; abstr 3051; Abstract)

  109. Pan K, Li YQ, Wang W, Xu L, Zhang YJ, Zheng HX, Zhao JJ, Qiu HJ, Weng DS, Li JJ, Wang QJ, Huang LX, He J, Chen SP, Ke ML, Wu PH, Chen MS, Li SP, Xia JC, Zeng YX (2013) The efficacy of cytokine-induced killer cell infusion as an adjuvant therapy for postoperative hepatocellular carcinoma patients. Ann Surg Oncol 20(13):4305–4311. doi:10.1245/s10434-013-3144-x

    Article  PubMed  Google Scholar 

  110. Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, Yu SJ, Gwak GY, Kim KM, Kim YJ, Lee JW, Yoon JH (2015) Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 148(7):1383–1391.e6. doi:10.1053/j.gastro.2015.02.055

    Article  CAS  PubMed  Google Scholar 

  111. Ma Y, Xu YC, Tang L, Zhang Z, Wang J, Wang HX (2012) Cytokine-induced killer (CIK) cell therapy for patients with hepatocellular carcinoma: efficacy and safety. Exp Hematol Oncol 1(1):11. doi:10.1186/2162-3619-1-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sangro B, Gomez-Martin C, de la Mata M, Inarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P, Lasarte JJ, Perez-Gracia JL, Melero I, Prieto J (2013) A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 59(1):81–88. doi:10.1016/j.jhep.2013.02.022

    Article  CAS  PubMed  Google Scholar 

  113. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling THR, Meyer T, Kang YK, Yeo W, Chopra A, Anderson J, Dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389(10088):2492–2502. doi:10.1016/S0140-6736(17)31046-2

    Article  CAS  PubMed  Google Scholar 

  114. Sangro B, Park J-W, Cruz CMD, Anderson J, Lang L, Neely J, Shaw JW, Cheng A-L (2016) A randomized, multicenter, phase 3 study of nivolumab vs sorafenib as first-line treatment in patients (pts) with advanced hepatocellular carcinoma (HCC): CheckMate-459. Annual Meeting, 2016. J Clin Oncol 34 (suppl; abstr TPS4147; Abstract)

  115. Faivre SJ, Santoro A, Kelley RK, Merle P, Gane E, Douillard J-Y, Waldschmidt D, Mulcahy MF, Costentin C, Minguez B, Papappicco P, Gueorguieva I, Cleverly A, Desaiah D, Lahn MM, Ameryckx S, Benhadji KA, Raymond E, Giannelli G (2014) A phase 2 study of a novel transforming growth factor-beta (TGF-β1) receptor I kinase inhibitor, LY2157299 monohydrate (LY), in patients with advanced hepatocellular carcinoma (HCC). Gastrointestinal Cancers Symposium, 2014. J Clin Oncol 32, 2014 (suppl 3; abstr LBA173; Abstract)

  116. Zerbini A, Pilli M, Laccabue D, Pelosi G, Molinari A, Negri E, Cerioni S, Fagnoni F, Soliani P, Ferrari C, Missale G (2010) Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 138(5):1931–1942. doi:10.1053/j.gastro.2009.12.051

    Article  CAS  PubMed  Google Scholar 

  117. Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, Kagaya T, Fushimi K, Kaneko S (2013) Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 57(4):1448–1457. doi:10.1002/hep.26153

    Article  CAS  PubMed  Google Scholar 

  118. Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, Kinoshita H, Masuda J, Hazama H, Sakamoto I, Kohno S (1998) Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43(4):575–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nakanishi M, Chuma M, Hige S, Asaka M (2008) Abscopal effect on hepatocellular carcinoma. Am J Gastroenterol 103(5):1320–1321. doi:10.1111/j.1572-0241.2007.01782_13.x

    Article  PubMed  Google Scholar 

  120. Duffy AG, Makarova-Rusher OV, Pratt D, Kleiner DE, Ulahannan S, Mabry D, Fioravanti S, Walker M, Carey S, Figg WD, Steinberg SM, Anderson V, Levy E, Krishnasamy V, Wood BJ, Greten TF (2016) Tremelimumab: a monoclonal antibody against CTLA-4—In combination with subtotal ablation (trans catheter arterial chemoembolization (TACE), radiofrequency ablation (RFA) or cryoablation) in patients with hepatocellular carcinoma (HCC) and biliary tract carcinoma (BTC). ASCO Annual Meeting, 2016. J Clin Oncol 34 (suppl; abstr 4073; Abstract)

  121. Greten TF, Ormandy LA, Fikuart A, Hochst B, Henschen S, Horning M, Manns MP, Korangy F (2010) Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother 33(2):211–218. doi:10.1097/CJI.0b013e3181bb499f

    Article  CAS  PubMed  Google Scholar 

  122. De la Torre AN, Castaneda I, Contractor S, Salazar AM (2015) Use of low-dose cyclophosphaminde followed by low-dose tumoral radiation, intratumoral poly-ICLC combined with local-regional therapy, followed by systemic immune boosting with intramuscular poly-ICLC in patients with cancers of the liver. Gastrointestinal Cancers Symposium, 2015. J Clin Oncol 33 (suppl 3; abstr 327; Abstract)

  123. Chen ML, Yan BS, Lu WC, Chen MH, Yu SL, Yang PC, Cheng AL (2014) Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity. Int J Cancer 134(2):319–331. doi:10.1002/ijc.28362

    Article  PubMed  CAS  Google Scholar 

  124. Heine A, Schilling J, Grunwald B, Kruger A, Gevensleben H, Held SA, Garbi N, Kurts C, Brossart P, Knolle P, Diehl L, Hochst B (2016) The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib. Cancer Immunol Immunother 65(3):273–282. doi:10.1007/s00262-015-1790-5

    Article  CAS  PubMed  Google Scholar 

  125. Abou-Alfa GK, Sangro B, Morse M, Zhu AX, Kim RD, Cheng A-L, Kudo M, Kang Y-K, Chan SL, Antal J, Boice J, Xiao F, Morris SR, Bendell J (2016) Phase 1/2 study of durvalumab and tremelimumab as monotherapy and in combination in patients with unresectable hepatocellular carcinoma (HCC). ASCO Annual Meeting, 2016. J Clin Oncol 35 (suppl; abstr 4073; Abstract)

  126. Courau T, Nehar-Belaid D, Florez L, Levacher B, Vazquez T, Brimaud F, Bellier B, Klatzmann D (2016) TGF-beta and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight 1(9):e85974. doi:10.1172/jci.insight.85974

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolanos E, Lang V, Rodriguez M, Aznar MA, Jure-Kunkel M, Melero I (2016) Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur J Immunol 46(3):513–522. doi:10.1002/eji.201445388

    Article  CAS  PubMed  Google Scholar 

  128. Wan YL, Zheng SS, Zhao ZC, Li MW, Jia CK, Zhang H (2004) Expression of co-stimulator 4-1BB molecule in hepatocellular carcinoma and adjacent non-tumor liver tissue, and its possible role in tumor immunity. World J Gastroenterol 10(2):195–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gauttier V, Judor JP, Le Guen V, Cany J, Ferry N, Conchon S (2014) Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int J Cancer 135(12):2857–2867. doi:10.1002/ijc.28943

    Article  CAS  PubMed  Google Scholar 

  130. Xiao H, Huang B, Yuan Y, Li D, Han LF, Liu Y, Gong W, Wu FH, Zhang GM, Feng ZH (2007) Soluble PD-1 facilitates 4-1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin Cancer Res 13(6):1823–1830. doi:10.1158/1078-0432.CCR-06-2154

    Article  CAS  PubMed  Google Scholar 

  131. Chen M, Ouyang H, Zhou S, Li J, Ye Y (2014) Effect of PLGA nanoparticles conjugated with anti-OX40/anti-AFP mAbs on cytotoxicity of CTL cells against hepatocellular carcinoma. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 30(4):337–341

    PubMed  Google Scholar 

  132. Morales-Kastresana A, Sanmamed MF, Rodriguez I, Palazon A, Martinez-Forero I, Labiano S, Hervas-Stubbs S, Sangro B, Ochoa C, Rouzaut A, Azpilikueta A, Bolanos E, Jure-Kunkel M, Gutgemann I, Melero I (2013) Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model. Clin Cancer Res 19(22):6151–6162. doi:10.1158/1078-0432.CCR-13-1189

    Article  CAS  PubMed  Google Scholar 

  133. Piconese S, Timperi E, Pacella I, Schinzari V, Tripodo C, Rossi M, Guglielmo N, Mennini G, Grazi GL, Di Filippo S, Brozzetti S, Fazzi K, Antonelli G, Lozzi MA, Sanchez M, Barnaba V (2014) Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus-infected liver tissue. Hepatology 60(5):1494–1507. doi:10.1002/hep.27188

    Article  CAS  PubMed  Google Scholar 

  134. Wang XF, Korangy F (2014) Intrahepatic landscape of regulatory T-cell subsets in chronically HCV-infected patients with cirrhosis and HCC. Hepatology 60(5):1461–1462. doi:10.1002/hep.27271

    Article  CAS  PubMed  Google Scholar 

  135. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A (2016) Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 52:50–66. doi:10.1016/j.ejca.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  136. Sanmamed MF, Pastor F, Rodriguez A, Perez-Gracia JL, Rodriguez-Ruiz ME, Jure-Kunkel M, Melero I (2015) Agonists of Co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol 42(4):640–655. doi:10.1053/j.seminoncol.2015.05.014

    Article  CAS  PubMed  Google Scholar 

  137. Heo J, Breitbach CJ, Moon A, Kim CW, Patt R, Kim MK, Lee YK, Oh SY, Woo HY, Parato K, Rintoul J, Falls T, Hickman T, Rhee BG, Bell JC, Kirn DH, Hwang TH (2011) Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol Ther 19(6):1170–1179. doi:10.1038/mt.2011.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sangro B, Melero I, Yau TC, Hsu C, Kudo M, Crocenzi TS, Kim T-Y, Choo S, Trojan J, Meyer T, Kang Y-K, Anderson J, Cruz CMD, Lang L, Neely J, El-Khoueiry B (2016) A Safety and antitumor activity of nivolumab (nivo) in patients (pts) with advanced hepatocellular carcinoma (HCC): Interim analysis of dose-expansion cohorts from the phase 1/2 CheckMate-040 study. ASCO Annual Meeting, 2016. J Clin Oncol 34 (suppl; abstr 4078; Abstract)

Download references

Acknowledgements

Joseph Obeid and Craig Slingluff Jr. would like to thank the National Cancer Institute for the funding provided for salary support NCI T32 CA163177 and NCI P30 CA044579, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama E. Rahma.

Ethics declarations

Conflict of interest

Osama Rahma receives research support from Merck and is a speaker for activities supported by educational grants from Bristol-Meyers Squibb and Merck. Craig Slingluff Jr. received material from Merck for an ongoing clinical trial. All other authors have nothing to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obeid, J.M., Kunk, P.R., Zaydfudim, V.M. et al. Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time?. Cancer Immunol Immunother 67, 161–174 (2018). https://doi.org/10.1007/s00262-017-2082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2082-z

Keywords

Navigation