Skip to main content

Immune Regulation in HCC and the Prospect of Immunotherapy

  • Chapter
  • First Online:
Precision Molecular Pathology of Liver Cancer

Abstract

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide, and the prognosis remains poor. The currently available treatment protocols have not been able to affect the overall prognosis significantly. Immune processes have been shown to play a major role in tumorigenesis of HCC. The immune tolerance of the liver which allows liver transplant candidates to be maintained on minimal doses of immunosuppressants also contributes to HCC development and metastasis. This understanding has opened the scope of immune-based treatments in advanced HCC. Various preclinical and early clinical trials of immunotherapy in HCC, including immune checkpoint blockade, immune cell-based therapy, vaccination strategies, and combination of these approaches with conventional therapies, are ongoing. In this chapter, we discuss the immune regulation in HCC and the evolution of immune-based treatment approaches for hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFP:

Alpha-fetoprotein

APC:

Antigen-presenting cell

CD:

Cluster of differentiation

CTA:

Cancer testis antigen

CTL:

Cytotoxic T lymphocyte

CTLA:

Cytotoxic T lymphocyte-associated antigen

DC:

Dendritic cell

FGF:

Fibroblast growth factor

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GPC3:

Glypican-3

HCC:

Hepatocellular carcinoma

hTERT:

Human telomerase reverse transcriptase

ICAM:

Intercellular adhesion molecule

IDO:

Indoleamine dioxygenase

IFN:

Interferon

IL:

Interleukin

LFA:

Lymphocyte function-associated antigen

LSEC:

Liver sinusoidal endothelial cells

MDSC:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

NK:

Natural killer

PBMC:

Peripheral blood mononuclear cells

PD-1:

Programmed death receptor 1

PD-L1:

Programmed death-1 ligand

PG:

Prostaglandin

RFA:

Radiofrequency ablation

TAA:

Tumor-associated antigen

TACE:

Transarterial chemoembolization

TGF:

Transforming growth factor

TIL:

Tumor-infiltrating lymphocytes

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

Treg:

T regulatory cells

VEGF:

Vascular endothelial growth factor

References

  1. Singal AG, El-Serag HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol. 2015;13:2140.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Elmberg M, Hultcrantz R, Ekbom A, Brandt L, Olsson S, Olsson R, et al. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology. 2003;125(6):1733–41.

    Article  PubMed  Google Scholar 

  3. Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis. 2005;25(2):143–54.

    Article  PubMed  Google Scholar 

  4. Hassan MM, Hwang LY, Hatten CJ, Swaim M, Li D, Abbruzzese JL, et al. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology. 2002;36(5):1206–13.

    Article  CAS  PubMed  Google Scholar 

  5. Degos F, Christidis C, Ganne-Carrie N, Farmachidi JP, Degott C, Guettier C, et al. Hepatitis C virus related cirrhosis: time to occurrence of hepatocellular carcinoma and death. Gut. 2000;47(1):131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  CAS  PubMed  Google Scholar 

  7. Nordenstedt H, White DL, El-Serag HB. The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis. 2010;42(Suppl 3):S206–14.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334(11):693–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bismuth H, Majno PE. Hepatobiliary surgery. J Hepatol. 2000;32(1 Suppl):208–24.

    Article  CAS  PubMed  Google Scholar 

  10. Management of Hepatocellular Carcinoma (HCC) - Viral Hepatitis. 2015. http://www.hepatitis.va.gov/provider/guidelines/2009HCC.asp#note18

  11. Chen MS, Li JQ, Zheng Y, Guo RP, Liang HH, Zhang YQ, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg. 2006;243(3):321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brunello F, Veltri A, Carucci P, Pagano E, Ciccone G, Moretto P, et al. Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma: a randomized controlled trial. Scand J Gastroenterol. 2008;43(6):727–35.

    Article  PubMed  Google Scholar 

  13. Lencioni RA, Allgaier HP, Cioni D, Olschewski M, Deibert P, Crocetti L, et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology. 2003;228(1):235–40.

    Article  PubMed  Google Scholar 

  14. Shiina S, Teratani T, Obi S, Sato S, Tateishi R, Fujishima T, et al. A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology. 2005;129(1):122–30.

    Article  PubMed  Google Scholar 

  15. Hasegawa K, Kokudo N, Shiina S, Tateishi R, Makuuchi M. Surgery versus radiofrequency ablation for small hepatocellular carcinoma: start of a randomized controlled trial (SURF trial). Hepatol Res. 2010;40(8):851–2.

    Article  PubMed  Google Scholar 

  16. Liver EAFTSOT, Cancer EOFRATO. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43.

    Article  Google Scholar 

  17. Bruix J, Sherman M, Diseases AAftSoL. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Clark TWI. Complications of hepatic chemoembolization. Semin Intervent Radiol. 2006;23(2):119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lin MT, Kuo PH. Pulmonary lipiodol embolism after transcatheter arterial chemoembolization for hepatocellular carcinoma. J R Soc Med Short Rep. 2010;1:6.

    Google Scholar 

  20. Chung JW, Park JH, Han JK, Choi BI, Han MC, Lee HS, et al. Hepatic tumors: predisposing factors for complications of transcatheter oily chemoembolization. Radiology. 1996;198(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  21. Berger DH, Carrasco CH, Hohn DC, Curley SA. Hepatic artery chemoembolization or embolization for primary and metastatic liver tumors: post-treatment management and complications. J Surg Oncol. 1995;60(2):116–21.

    Article  CAS  PubMed  Google Scholar 

  22. Finn RS. Drug therapy: sorafenib. Hepatology. 2010;51(5):1843–9.

    Article  CAS  PubMed  Google Scholar 

  23. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.

    Article  CAS  PubMed  Google Scholar 

  24. Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. 2007;59(5):561–74.

    Article  CAS  PubMed  Google Scholar 

  25. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66(24):11851–8.

    Article  CAS  PubMed  Google Scholar 

  26. Schlachterman A, Craft WW, Hilgenfeldt E, Mitra A, Cabrera R. Current and future treatments for hepatocellular carcinoma. World J Gastroenterol. 2015;21(28):8478–91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Miamen AG, Dong H, Roberts LR. Immunotherapeutic approaches to hepatocellular carcinoma treatment. Liver Cancer. 2012;1(3–4):226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herkel J, Jagemann B, Wiegard C, Lazaro JF, Lueth S, Kanzler S, et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocytes. Hepatology. 2003;37(5):1079–85.

    Article  CAS  PubMed  Google Scholar 

  29. Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol. 2003;3(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  30. Schurich A, Berg M, Stabenow D, Böttcher J, Kern M, Schild HJ, et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J Immunol. 2010;184(8):4107–14.

    Article  CAS  PubMed  Google Scholar 

  31. Pardee AD, Butterfield LH. Immunotherapy of hepatocellular carcinoma: unique challenges and clinical opportunities. Oncoimmunology. 2012;1(1):48–55.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66.

    Article  CAS  PubMed  Google Scholar 

  33. Müschen M, Warskulat U, Peters-Regehr T, Bode JG, Kubitz R, Häussinger D. Involvement of CD95 (Apo-1/Fas) ligand expressed by rat Kupffer cells in hepatic immunoregulation. Gastroenterology. 1999;116(3):666–77.

    Article  PubMed  Google Scholar 

  34. Bradham CA, Plümpe J, Manns MP, Brenner DA, Trautwein C. Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol. 1998;275(3 Pt 1):G387–92.

    CAS  PubMed  Google Scholar 

  35. Kuniyasu Y, Marfani SM, Inayat IB, Sheikh SZ, Mehal WZ. Kupffer cells required for high affinity peptide-induced deletion, not retention, of activated CD8+ T cells by mouse liver. Hepatology. 2004;39(4):1017–27.

    Article  PubMed  Google Scholar 

  36. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63.

    Article  CAS  PubMed  Google Scholar 

  37. Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology. 2015;62(2):481–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hammerich L, Tacke F. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis. World J Gastrointest Pathophysiol. 2015;6(3):43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ionescu AG, Streba LA, Vere CC, Ciurea ME, Streba CT, Ionescu M, et al. Histopathological and immunohistochemical study of hepatic stellate cells in patients with viral C chronic liver disease. Rom J Morphol Embryol. 2013;54(4):983–91.

    CAS  PubMed  Google Scholar 

  40. Breous E, Thimme R. Potential of immunotherapy for hepatocellular carcinoma. J Hepatol. 2011;54(4):830–4.

    Article  CAS  PubMed  Google Scholar 

  41. Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J, et al. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol. 2006;132(5):293–301.

    Article  PubMed  Google Scholar 

  42. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807.

    Article  CAS  PubMed  Google Scholar 

  43. Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med. 2002;195(1):43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol. 2008;129(3):428–37.

    Article  CAS  PubMed  Google Scholar 

  45. Hong YP, Li ZD, Prasoon P, Zhang Q. Immunotherapy for hepatocellular carcinoma: from basic research to clinical use. World J Hepatol. 2015;7(7):980–92.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Safety Study of Liver Natural Killer Cell Therapy for Hepatoma Liver Transplantation - Full Text View - ClinicalTrials.gov. 2015. https://www.clinicaltrials.gov/ct2/show/NCT01147380?term=Hepatocellular+carcinoma+immunotherapy&rank=6

  47. Hyodo N, Nakamura I, Imawari M. Hepatitis B core antigen stimulates interleukin-10 secretion by both T cells and monocytes from peripheral blood of patients with chronic hepatitis B virus infection. Clin Exp Immunol. 2004;135(3):462–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miroux C, Vausselin T, Delhem N. Regulatory T cells in HBV and HCV liver diseases: implication of regulatory T lymphocytes in the control of immune response. Expert Opin Biol Ther. 2010;10(11):1563–72.

    Article  CAS  PubMed  Google Scholar 

  49. Golden-Mason L, Palmer B, Klarquist J, Mengshol JA, Castelblanco N, Rosen HR. Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J Virol. 2007;81(17):9249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, McMahon BJ, et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J Virol. 2009;83(18):9122–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shirabe K, Motomura T, Muto J, Toshima T, Matono R, Mano Y, et al. Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. Int J Clin Oncol. 2010;15(6):552–8.

    Article  PubMed  Google Scholar 

  52. Hilgenfeldt EG, Schlachterman A, Firpi RJ. Hepatitis C: treatment of difficult to treat patients. World J Hepatol. 2015;7(15):1953–63.

    Article  PubMed  PubMed Central  Google Scholar 

  53. O’Bryan JM, Potts JA, Bonkovsky HL, Mathew A, Rothman AL, Group H-CT. Extended interferon-alpha therapy accelerates telomere length loss in human peripheral blood T lymphocytes. PLoS One. 2011;6(8):e20922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Saito K, Ait-Goughoulte M, Truscott SM, Meyer K, Blazevic A, Abate G, et al. Hepatitis C virus inhibits cell surface expression of HLA-DR, prevents dendritic cell maturation, and induces interleukin-10 production. J Virol. 2008;82(7):3320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65(6):2457–64.

    Article  CAS  PubMed  Google Scholar 

  56. Greten TF, Manns MP, Korangy F. Immunotherapy of hepatocellular carcinoma. J Hepatol. 2006;45(6):868–78.

    Article  CAS  PubMed  Google Scholar 

  57. Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood). 2001;226(5):377–408.

    Article  CAS  Google Scholar 

  58. Butterfield LH, Ribas A, Meng WS, Dissette VB, Amarnani S, Vu HT, et al. T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin Cancer Res. 2003;9(16 Pt 1):5902–8.

    CAS  PubMed  Google Scholar 

  59. Liu Y, Daley S, Evdokimova VN, Zdobinski DD, Potter DM, Butterfield LH. Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. J Immunol. 2006;177(1):712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thimme R, Neagu M, Boettler T, Neumann-Haefelin C, Kersting N, Geissler M, et al. Comprehensive analysis of the alpha-fetoprotein-specific CD8+ T cell responses in patients with hepatocellular carcinoma. Hepatology. 2008;48(6):1821–33.

    Article  CAS  PubMed  Google Scholar 

  61. Greten TF, Ormandy LA, Fikuart A, Hochst B, Henschen S, Horning M, et al. Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother. 2010;33(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ho M, Kim H. Glypican-3: a new target for cancer immunotherapy. Eur J Cancer. 2011;47(3):333–8.

    Article  CAS  PubMed  Google Scholar 

  63. Xiao W-K, Qi C-Y, Chen D, Li S-Q, Fu S-J, Peng B-G, et al. Prognostic significance of glypican-3 in hepatocellular carcinoma: a meta-analysis. BMC Cancer. 2014;14(1):104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wang YL, Zhu ZJ, Teng DH, Yao Z, Gao W, Shen ZY. Glypican-3 expression and its relationship with recurrence of HCC after liver transplantation. World J Gastroenterol. 2012;18(19):2408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li SQ, Lin J, Qi CY, Fu SJ, Xiao WK, Peng BG, et al. GPC3 DNA vaccine elicits potent cellular antitumor immunity against HCC in mice. Hepatogastroenterology. 2014;61(130):278–84.

    CAS  PubMed  Google Scholar 

  66. Komori H, Nakatsura T, Senju S, Yoshitake Y, Motomura Y, Ikuta Y, et al. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin Cancer Res. 2006;12(9):2689–97.

    Article  CAS  PubMed  Google Scholar 

  67. Dargel C, Bassani-Sternberg M, Hasreiter J, Zani F, Bockmann JH, Thiele F, et al. T cells engineered to express a T-cell receptor specific for Glypican-3 to recognize and kill hepatoma cells in vitro and in mice. Gastroenterology. 2015;149(4):1042–52.

    Article  CAS  PubMed  Google Scholar 

  68. Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, et al. The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res. 2004;10(20):6946–55.

    Article  CAS  PubMed  Google Scholar 

  69. Luo G, Huang S, Xie X, Stockert E, Chen YT, Kubuschok B, et al. Expression of cancer-testis genes in human hepatocellular carcinomas. Cancer Immun. 2002;2:11.

    PubMed  Google Scholar 

  70. Korangy F, Ormandy LA, Bleck JS, Klempnauer J, Wilkens L, Manns MP, et al. Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res. 2004;10(13):4332–41.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang HH, Mei MH, Fei R, Liao WJ, Wang XY, Qin LL, et al. Regulatory T cell depletion enhances tumor specific CD8 T-cell responses, elicited by tumor antigen NY-ESO-1b in hepatocellular carcinoma patients, in vitro. Int J Oncol. 2010;36(4):841–8.

    CAS  PubMed  Google Scholar 

  72. Bricard G, Bouzourene H, Martinet O, Rimoldi D, Halkic N, Gillet M, et al. Naturally acquired MAGE-A10- and SSX-2-specific CD8+ T cell responses in patients with hepatocellular carcinoma. J Immunol. 2005;174(3):1709–16.

    Article  CAS  PubMed  Google Scholar 

  73. Zerbini A, Pilli M, Soliani P, Ziegler S, Pelosi G, Orlandini A, et al. Ex vivo characterization of tumor-derived melanoma antigen encoding gene-specific CD8+cells in patients with hepatocellular carcinoma. J Hepatol. 2004;40(1):102–9.

    Article  CAS  PubMed  Google Scholar 

  74. Mizukoshi E, Nakamoto Y, Marukawa Y, Arai K, Yamashita T, Tsuji H, et al. Cytotoxic T cell responses to human telomerase reverse transcriptase in patients with hepatocellular carcinoma. Hepatology. 2006;43(6):1284–94.

    Article  CAS  PubMed  Google Scholar 

  75. Huang DS, Wang Z, He XJ, Diplas BH, Yang R, Killela PJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer. 2015;51(8):969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Satow R, Shitashige M, Kanai Y, Takeshita F, Ojima H, Jigami T, et al. Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clin Cancer Res. 2010;16(9):2518–28.

    Article  CAS  PubMed  Google Scholar 

  77. Aref AM, Hoa NT, Ge L, Agrawal A, Dacosta-Iyer M, Lambrecht N, et al. HCA519/TPX2: a potential T-cell tumor-associated antigen for human hepatocellular carcinoma. Onco Targets Ther. 2014;7:1061–70.

    PubMed  PubMed Central  Google Scholar 

  78. Ma Y, Lin D, Sun W, Xiao T, Yuan J, Han N, et al. Expression of targeting protein for xklp2 associated with both malignant transformation of respiratory epithelium and progression of squamous cell lung cancer. Clin Cancer Res. 2006;12(4):1121–7.

    Article  CAS  PubMed  Google Scholar 

  79. Mizukoshi E, Nakagawa H, Kitahara M, Yamashita T, Arai K, Sunagozaka H, et al. Immunological features of T cells induced by human telomerase reverse transcriptase-derived peptides in patients with hepatocellular carcinoma. Cancer Lett. 2015;364(2):98–105.

    Article  CAS  PubMed  Google Scholar 

  80. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2014;60(5):1776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Greten TF, Wang XW, Korangy F. Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut. 2015;64(5):842–8.

    Article  CAS  PubMed  Google Scholar 

  82. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Romano E, Romero P. The therapeutic promise of disrupting the PD-1/PD-L1 immune checkpoint in cancer: unleashing the CD8 T cell mediated anti-tumor activity results in significant, unprecedented clinical efficacy in various solid tumors. J Immunother Cancer. 2015;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. 2011;128(4):887–96.

    Article  CAS  PubMed  Google Scholar 

  85. Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69(20):8067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61(5):1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  89. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209–040. | 2015 ASCO Annual Meeting | Abstracts | Meeting Library. 2015. http://meetinglibrary.asco.org/content/146146-156

  90. Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 2013;13:5.

    PubMed  PubMed Central  Google Scholar 

  91. Iwashita Y, Tahara K, Goto S, Sasaki A, Kai S, Seike M, et al. A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol Immunother. 2003;52(3):155–61.

    CAS  PubMed  Google Scholar 

  92. Kumagi T, Akbar SM, Horiike N, Kurose K, Hirooka M, Hiraoka A, et al. Administration of dendritic cells in cancer nodules in hepatocellular carcinoma. Oncol Rep. 2005;14(4):969–73.

    PubMed  Google Scholar 

  93. Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 2009;49(1):124–32.

    Article  PubMed  Google Scholar 

  94. Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Mukaida N, Matsushima K, et al. Enhancement of tumor-specific T-cell responses by transcatheter arterial embolization with dendritic cell infusion for hepatocellular carcinoma. Int J Cancer. 2010;126(9):2164–74.

    CAS  PubMed  Google Scholar 

  95. Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Woller N, Knocke S, Mundt B, Gürlevik E, Strüver N, Kloos A, et al. Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice. J Clin Invest. 2011;121(7):2570–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen Y, Yang D, Li S, Gao Y, Jiang R, Deng L, et al. Development of a listeria monocytogenes-based vaccine against hepatocellular carcinoma. Oncogene. 2012;31(17):2140–52.

    Article  CAS  PubMed  Google Scholar 

  98. Butterfield LH, Economou JS, Gamblin TC, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med. 2014;12:86.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Parato KA, Breitbach CJ, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20(4):749–58.

    Article  CAS  PubMed  Google Scholar 

  100. Heo J, Breitbach CJ, Moon A, Kim CW, Patt R, Kim MK, et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol Ther. 2011;19(6):1170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hepatocellular Carcinoma Study Comparing Vaccinia Virus Based Immunotherapy Plus Sorafenib vs Sorafenib Alone - Full Text View - ClinicalTrials.gov. 2015. https://www.clinicaltrials.gov/ct2/show/NCT02562755?term=Hepatocellular+carcinoma+immunotherapy&rank=3

  102. Iwanaga T. [Studies on cases of spontaneous regression of cancer in Japan in 2011, and of hepatic carcinoma, lung cancer and pulmonary metastases in the world between 2006 and 2011]. Gan To Kagaku Ryoho. 2013;40(11):1475–87.

    Google Scholar 

  103. Ayaru L, Pereira SP, Alisa A, Pathan AA, Williams R, Davidson B, et al. Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol. 2007;178(3):1914–22.

    Article  CAS  PubMed  Google Scholar 

  104. Zerbini A, Pilli M, Fagnoni F, Pelosi G, Pizzi MG, Schivazappa S, et al. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation. J Immunother. 2008;31(3):271–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roniel Cabrera M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, J., Hilgenfeldt, E., Cabrera, R. (2018). Immune Regulation in HCC and the Prospect of Immunotherapy. In: Liu, C. (eds) Precision Molecular Pathology of Liver Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-68082-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68082-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68080-4

  • Online ISBN: 978-3-319-68082-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics