Skip to main content
Log in

Hepatic myeloid-derived suppressor cells in cancer

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells are key components of tumor-induced immune suppression. They are composed of a heterogeneous population of immature myeloid cells that abrogates innate and adaptive immune responses. Myeloid-derived suppressor cells accumulate not only in peripheral blood, secondary lymphoid organs and tumors, but also in the liver in preclinical tumor models and in hepatocellular carcinoma patients. The liver, continuously exposed to food and microbial antigens from the intestine, avoids autoimmune damage through the use of specialized mechanisms of immune tolerance. In the context of cancer, myeloid-derived suppressor cells profit the intrinsic tolerogenic properties of the liver to accumulate and exert various immune-suppressive and tumor-promoting mechanisms which go from inducing immune cell dysfunction to supporting the generation of liver metastases. In this review, we seek to describe the phenotype, function, accumulation and therapeutic targeting of hepatic myeloid-derived suppressor cells both in preclinical settings and in the context of human hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell cytotoxicity

CAR:

Chimeric antigen receptor

DC:

Dendritic cell

HCC:

Hepatocellular carcinoma

H2O2 :

Hydrogen peroxide

IFN-γ:

Interferon gamma

iNOS:

Inducible nitric oxide synthase

MDSC:

Myeloid-derived suppressor cell

MHC-II:

Major histocompatibility complex-II

mTOR:

Mammalian target of rapamycin

NOX2:

NADPH oxidase 2

NK:

Natural killer

NO:

Nitric oxide

OVA:

Ovalbumin

PBMC:

Peripheral blood mononuclear cell

PD-L1:

Programmed death ligand 1

PNT:

Peroxynitrite

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

Treg :

Regulatory T cell

TGF-β1:

Transforming growth factor beta 1

References

  1. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268. doi:10.1038/nri3175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163. doi:10.1146/annurev.immunol.021908.132629

    Article  CAS  PubMed  Google Scholar 

  3. Ilkovitch D, Lopez DM (2009) The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 69:5514–5521. doi:10.1158/0008-5472.CAN-08-4625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Eggert T, Medina-Echeverz J, Kapanadze T, Kruhlak MJ, Korangy F, Greten TF (2014) Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage. PLoS One 9:e112717. doi:10.1371/journal.pone.0112717

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kapanadze T, Gamrekelashvili J, Ma C et al (2013) Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol 59:1007–1013. doi:10.1016/j.jhep.2013.06.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Connolly MK, Mallen-St Clair J, Bedrosian AS et al (2010) Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J Leukoc Biol 87:713–725. doi:10.1189/jlb.0909607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kapanadze T, Medina-Echeverz J, Gamrekelashvili J et al (2015) Tumor-induced CD11b Gr-1 myeloid-derived suppressor cells exacerbate immune mediated hepatitis in mice in a CD40-dependent manner. Eur J Immunol 45(4):1148–1158. doi:10.1002/eji.201445093

    Article  CAS  PubMed  Google Scholar 

  8. Zhao L, Lim SY, Gordon-Weeks AN et al (2013) Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57:829–839. doi:10.1002/hep.26094

    Article  CAS  PubMed  Google Scholar 

  9. Kitamura T, Fujishita T, Loetscher P, Revesz L, Hashida H, Kizaka-Kondoh S, Aoki M, Taketo MM (2010) Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proc Natl Acad Sci USA 107:13063–13068. doi:10.1073/pnas.1002372107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Burga RA, Thorn M, Point GR et al (2015) Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother. doi:10.1007/s00262-015-1692-6

    PubMed  Google Scholar 

  11. Gonzalez-Aparicio M, Alzuguren P, Mauleon I et al (2011) Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut 60:341–349. doi:10.1136/gut.2010.211722

    Article  CAS  PubMed  Google Scholar 

  12. Gauttier V, Judor JP, Le Guen V, Cany J, Ferry N, Conchon S (2014) Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int J Cancer 135:2857–2867. doi:10.1002/ijc.28943

    Article  CAS  PubMed  Google Scholar 

  13. Ma S, Cheng Q, Cai Y et al (2014) IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 74:1969–1982. doi:10.1158/0008-5472.CAN-13-2534

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt K, Zilio S, Schmollinger JC, Bronte V, Blankenstein T, Willimsky G (2013) Differently immunogenic cancers in mice induce immature myeloid cells that suppress CTL in vitro but not in vivo following transfer. Blood 121:1740–1748. doi:10.1182/blood-2012-06-436568

    Article  CAS  PubMed  Google Scholar 

  15. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13:739–752. doi:10.1038/nrc3581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-Expanded Myeloid-Derived Suppressor Cells Induce Anergy of NK Cells through Membrane-Bound TGF-1. J Immunol 182:240–249. doi:10.4049/jimmunol.182.1.240

    Article  CAS  PubMed  Google Scholar 

  17. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91:167–181. doi:10.1189/jlb.0311177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fridlender ZG, Sun J, Mishalian I et al (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS One 7:e31524. doi:10.1371/journal.pone.0031524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Haverkamp JM, Crist SA, Elzey BD, Cimen C, Ratliff TL (2011) In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site. Eur J Immunol 41:749–759. doi:10.1002/eji.201041069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654. doi:10.1038/nri1668

    Article  CAS  PubMed  Google Scholar 

  21. Medina-Echeverz J, Ma C, Duffy A, Eggert T, Hawk N, Kleiner DE, Korangy F, Greten TF (2015) Systemic agonistic anti-CD40 treatment of tumor bearing mice modulates hepatic myeloid suppressive cells and causes immune-mediated liver damage. Cancer Immunol Res 3(5):557–566. doi:10.1158/2326-6066.CIR-14-0182

    Article  CAS  PubMed  Google Scholar 

  22. Lu T, Gabrilovich DI (2012) Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment. Clin Cancer Res 18:4877–4882. doi:10.1158/1078-0432.CCR-11-2939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lalor PF, Adams DH (2002) The liver: a model of organ-specific lymphocyte recruitment. Expert Rev Mol Med 4:1–16. doi:10.1017/S1462399402004155

    Article  PubMed  Google Scholar 

  24. Majumdar A, Curley SA, Wu X et al (2012) Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 9:530–538. doi:10.1038/nrgastro.2012.114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Thorn M, Point GR, Burga RA, Nguyen CT, Joseph Espat N, Katz SC (2014) Liver metastases induce reversible hepatic B cell dysfunction mediated by Gr-1+ CD11b+ myeloid cells. J Leukoc Biol 96:883–894. doi:10.1189/jlb.3A0114-012RR

    Article  PubMed  Google Scholar 

  26. Schneider C, Teufel A, Yevsa T et al (2012) Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut 61:1733–1743. doi:10.1136/gutjnl-2011-301116

    Article  CAS  PubMed  Google Scholar 

  27. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474

    Article  CAS  PubMed  Google Scholar 

  28. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506. doi:10.4049/jimmunol.0802740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sawanobori Y, Ueha S, Kurachi M et al (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466. doi:10.1182/blood-2008-01-136895

    Article  CAS  PubMed  Google Scholar 

  30. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631. doi:10.1038/nrc2444

    Article  CAS  PubMed  Google Scholar 

  31. Lim SY, Gordon-Weeks AN, Zhao L et al (2013) Recruitment of myeloid cells to the tumor microenvironment supports liver metastasis. Oncoimmunology 2:e23187. doi:10.4161/onci.23187

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J (2013) Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol 2013:436307. doi:10.1155/2013/436307

    PubMed Central  PubMed  Google Scholar 

  33. Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, Schwabe RF, Brenner DA (2009) CCR2 promotes hepatic fibrosis in mice. Hepatology 50:185–197. doi:10.1002/hep.22952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Si Y, Tsou CL, Croft K, Charo IF (2010) CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J Clin Invest 120:1192–1203. doi:10.1172/JCI40310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zimmermann HW, Trautwein C, Tacke F (2012) Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Front Physiol 3:56. doi:10.3389/fphys.2012.00056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lim SY, Gordon-Weeks A, Allen D, Kersemans V, Beech J, Smart S, Muschel RJ (2015) CD11b myeloid cells support hepatic metastasis through downregulation of Angiopoietin-like 7 in cancer cells. Hepatology. doi:10.1002/hep.27838

    PubMed Central  Google Scholar 

  37. Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802–807. doi:10.1016/j.intimp.2011.01.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135:234–243. doi:10.1053/j.gastro.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  39. Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y (2013) Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res 73:2435–2444. doi:10.1158/0008-5472.CAN-12-3381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hoechst B, Voigtlaender T, Ormandy L et al (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50:799–807. doi:10.1002/hep.23054

    Article  CAS  PubMed  Google Scholar 

  41. Hochst B, Schildberg FA, Sauerborn P et al (2013) Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 59:528–535. doi:10.1016/j.jhep.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  42. Resheq YJ, Li KK, Ward ST et al (2015) Contact-dependent depletion of hydrogen peroxide by catalase is a novel mechanism of myeloid-derived suppressor cell induction operating in human hepatic stellate cells. J Immunol 194:2578–2586. doi:10.4049/jimmunol.1401046

    Article  CAS  PubMed  Google Scholar 

  43. Duffy A, Zhao F, Haile L et al (2013) Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies. Cancer Immunol Immunother 62:299–307. doi:10.1007/s00262-012-1332-3

    Article  CAS  PubMed  Google Scholar 

  44. Yen BL, Yen ML, Hsu PJ, Liu KJ, Wang CJ, Bai CH, Sytwu HK (2013) Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3. Stem Cell Rep 1:139–151. doi:10.1016/j.stemcr.2013.06.006

    Article  CAS  Google Scholar 

  45. Oleinika K, Nibbs RJ, Graham GJ, Fraser AR (2013) Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171:36–45. doi:10.1111/j.1365-2249.2012.04657.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25:2586–2593. doi:10.1200/JCO.2006.09.4565

    Article  PubMed  Google Scholar 

  47. Fu J, Xu D, Liu Z et al (2007) Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132:2328–2339. doi:10.1053/j.gastro.2007.03.102

    Article  PubMed  Google Scholar 

  48. Yang XH, Yamagiwa S, Ichida T et al (2006) Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol 45:254–262. doi:10.1016/j.jhep.2006.01.036

    Article  CAS  PubMed  Google Scholar 

  49. Ma C, Kapanadze T, Gamrekelashvili J, Manns MP, Korangy F, Greten TF (2012) Anti-Gr-1 antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 92:1199–1206. doi:10.1189/jlb.0212059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Qin H, Lerman B, Sakamaki I et al (2014) Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat Med 20:676–681. doi:10.1038/nm.3560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Cao M, Xu Y, Youn JI, Cabrera R, Zhang X, Gabrilovich D, Nelson DR, Liu C (2011) Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab Invest 91:598–608. doi:10.1038/labinvest.2010.205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Chen Y, Ramjiawan RR, Reiberger T et al (2015) CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61(5):1591–1602. doi:10.1002/hep.27665

    Article  CAS  PubMed  Google Scholar 

  53. Cheng AL, Kang YK, Lin DY et al (2013) Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol 31:4067–4075. doi:10.1200/JCO.2012.45.8372

    Article  CAS  PubMed  Google Scholar 

  54. Ozao-Choy J, Ma G, Kao J et al (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69:2514–2522. doi:10.1158/0008-5472.CAN-08-4709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Eisenstein S, Coakley BA, Briley-Saebo K et al (2013) Myeloid-derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res 73:5003–5015. doi:10.1158/0008-5472.CAN-12-1597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Cheng L, Wang J, Li X, Xing Q, Du P, Su L, Wang S (2011) Interleukin-6 induces Gr-1+ CD11b+ myeloid cells to suppress CD8+ T cell-mediated liver injury in mice. PLoS One 6:e17631. doi:10.1371/journal.pone.0017631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Califano JA, Khan Z, Noonan KA et al (2015) Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res 21:30–38. doi:10.1158/1078-0432.CCR-14-1716

    Article  CAS  PubMed  Google Scholar 

  58. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–835. doi:10.1016/j.ccr.2012.04.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Yamada D, Rizvi S, Razumilava N et al (2015) IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism. Hepatology 61(5):1627–1642. doi:10.1002/hep.27687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. MacKinnon AC, Farnworth SL, Hodkinson PS et al (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650–2658

    Article  CAS  PubMed  Google Scholar 

  61. Hassan MM, Abdel-Wahab R, Kaseb A et al (2015) Obesity Early in Adulthood Increases Risk but Does Not Affect Outcomes of Hepatocellular Carcinoma. Gastroenterology. doi:10.1053/j.gastro.2015.03.044

    PubMed Central  Google Scholar 

  62. Deng ZB, Liu Y, Liu C et al (2009) Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology 50:1412–1420. doi:10.1002/hep.23148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We especially thank Joselyn Natasha Allen for artwork design and the NIH Fellows Editorial Board for editorial assistance. This work was supported by the Intramural Research Program of the National Cancer Institute, NIH.

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim F. Greten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Echeverz, J., Eggert, T., Han, M. et al. Hepatic myeloid-derived suppressor cells in cancer. Cancer Immunol Immunother 64, 931–940 (2015). https://doi.org/10.1007/s00262-015-1736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1736-y

Keywords

Navigation