Advertisement

Cuts from residues: the one-loop case

  • Samuel AbreuEmail author
  • Ruth Britto
  • Claude Duhr
  • Einan Gardi
Open Access
Regular Article - Theoretical Physics

Abstract

Using the multivariate residue calculus of Leray, we give a precise definition of the notion of a cut Feynman integral in dimensional regularization, as a residue evaluated on the variety where some of the propagators are put on shell. These are naturally associated to Landau singularities of the first type. Focusing on the one-loop case, we give an explicit parametrization to compute such cut integrals, with which we study some of their properties and list explicit results for maximal and next-to-maximal cuts. By analyzing homology groups, we show that cut integrals associated to Landau singularities of the second type are specific combinations of the usual cut integrals, and we obtain linear relations among different cuts of the same integral. We also show that all one-loop Feynman integrals and their cuts belong to the same class of functions, which can be written as parametric integrals.

Keywords

Scattering Amplitudes Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Eden, P. Landshoff, D. Olive and J. Polkinghorne, The Analytic S-Matrix, Cambridge University Press, Cambridge U.K. (1966).zbMATHGoogle Scholar
  3. [3]
    G. ’t Hooft and M. Veltman, Diagrammar, NATO Sci. Ser. B 4 (1974) 177.Google Scholar
  4. [4]
    L. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13 (1959) 181.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].
  6. [6]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    D.A. Kosower and K.J. Larsen, Maximal Unitarity at Two Loops, Phys. Rev. D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Johansson, D.A. Kosower and K.J. Larsen, Two-Loop Maximal Unitarity with External Masses, Phys. Rev. D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Johansson, D.A. Kosower and K.J. Larsen, Maximal Unitarity for the Four-Mass Double Box, Phys. Rev. D 89 (2014) 125010 [arXiv:1308.4632] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Søgaard and Y. Zhang, Elliptic Functions and Maximal Unitarity, Phys. Rev. D 91 (2015) 081701 [arXiv:1412.5577] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys. Rev. D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].ADSGoogle Scholar
  15. [15]
    E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys. B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].
  16. [16]
    A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B 916 (2017) 94 [arXiv:1610.08397] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Frellesvig and C.G. Papadopoulos, Cuts of Feynman Integrals in Baikov representation, JHEP 04 (2017) 083 [arXiv:1701.07356] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Zeng, Differential equations on unitarity cut surfaces, arXiv:1702.02355 [INSPIRE].
  19. [19]
    T. Dennen, M. Spradlin and A. Volovich, Landau Singularities and Symbology: One- and Two-loop MHV Amplitudes in SYM Theory, JHEP 03 (2016) 069 [arXiv:1512.07909] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Dennen, I. Prlina, M. Spradlin, S. Stanojevic and A. Volovich, Landau Singularities from the Amplituhedron, arXiv:1612.02708 [INSPIRE].
  21. [21]
    M. Veltman, Cambridge Lecture Notes in Physics. Vol. 4: Diagrammatica: The Path to Feynman rules, Cambridge University Press, Cambridge U.K. (1994).Google Scholar
  22. [22]
    E. Remiddi, Dispersion Relations for Feynman Graphs, Helv. Phys. Acta 54 (1982) 364 [INSPIRE].MathSciNetGoogle Scholar
  23. [23]
    S. Mandelstam, Analytic properties of transition amplitudes in perturbation theory, Phys. Rev. 115 (1959) 1741 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Ball, V.M. Braun and H.G. Dosch, Form-factors of semileptonic D decays from QCD sum rules, Phys. Rev. D 44 (1991) 3567 [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, From multiple unitarity cuts to the coproduct of Feynman integrals, JHEP 10 (2014) 125 [arXiv:1401.3546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Abreu, R. Britto and H. Grönqvist, Cuts and coproducts of massive triangle diagrams, JHEP 07 (2015) 111 [arXiv:1504.00206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].
  28. [28]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D.B. Fairlie, P.V. Landshoff, J. Nuttall and J.C. Polkinghorne, Singularities of the Second Type, J. Math. Phys. 3 (1962) 594.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D.B. Fairlie, P.V. Landshoff, J. Nuttall and J.C. Polkinghorne, Physical sheet properties of second type singularities, Phys. Lett. 3 (1962) 55.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    D. Fotiadi, M. Froissart, J. Lascoux and F. Pham, Applications of an isotopy theorem, Topology 4 (1965) 159.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R.C. Hwa and V.L. Teplitz, Homology and Feynman integrals, W.A. Benjamin Inc., San Francisco U.S.A. (1966).Google Scholar
  33. [33]
    F. Pham eds., Singularities of Integrals, Springer, Berlin Germany (2005).Google Scholar
  34. [34]
    J. Leray, Le calcul différential et intégral sur une variété analytique complexe. (Problème de Cauchy. III.), Bull. Soc. Math. Fr. 87 (1959) 81.Google Scholar
  35. [35]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B 302 (1993) 299 [Erratum ibid. B 318 (1993) 649] [hep-ph/9212308] [INSPIRE].
  36. [36]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    R.N. Lee, Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    M. Spradlin and A. Volovich, Symbols of One-Loop Integrals From Mixed Tate Motives, JHEP 11 (2011) 084 [arXiv:1105.2024] [INSPIRE].zbMATHGoogle Scholar
  39. [39]
    P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].
  40. [40]
    R.N. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl. 205-206 (2010) 135 [arXiv:1007.2256] [INSPIRE].
  41. [41]
    A.G. Grozin, Integration by parts: An Introduction, Int. J. Mod. Phys. A 26 (2011) 2807 [arXiv:1104.3993] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, Mineola U.S.A. (1972).zbMATHGoogle Scholar
  44. [44]
    S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].
  45. [45]
    D. Fotiadi and F. Pham, Analytic Properties of Some Integrals over Complex Manifolds, in Homology and Feynman integrals, R.C. Hwa and V.L. Teplitz eds., W.A. Benjamin Inc., San Francisco U.S.A. (1966).Google Scholar
  46. [46]
    D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    D. Fotiadi and F. Pham, Analytic study of Some Feynman Graphs by Homological Methods, in Homology and Feynman integrals, R.C. Hwa and V.L. Teplitz eds., W.A. Benjamin Inc., San Francisco U.S.A. (1966).Google Scholar
  49. [49]
    E. Panzer, Feynman integrals and hyperlogarithms, arXiv:1506.07243 [INSPIRE].
  50. [50]
    C. Bogner and S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A 25 (2010) 2585 [arXiv:1002.3458] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S. Bloch and D. Kreimer, Cutkosky Rules and Outer Space, arXiv:1512.01705 [INSPIRE].
  52. [52]
    J.B. Boyling, A Homological Approach to Parametric Feynman Integrals, Nuovo Cim. 53 (1968) 351.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    P.V. Landshoff, D. Olive and J.C. Polkinghorne, The Hierarchical Principle in Perturbation Theory, Nuovo Cim. 43 (1966) 444.ADSCrossRefGoogle Scholar
  54. [54]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
  58. [58]
    C. Anastasiou and K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD, Phys. Rev. D 67 (2003) 037501 [hep-ph/0208115] [INSPIRE].
  59. [59]
    C. Anastasiou, L.J. Dixon and K. Melnikov, NLO Higgs boson rapidity distributions at hadron colliders, Nucl. Phys. Proc. Suppl. 116 (2003) 193 [hep-ph/0211141] [INSPIRE].
  60. [60]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].
  61. [61]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
  62. [62]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    R.N. Lee and V.A. Smirnov, The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions, JHEP 12 (2012) 104 [arXiv:1209.0339] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    H.P. Stapp, Inclusive cross-sections are discontinuities, Phys. Rev. D 3 (1971) 3177 [INSPIRE].ADSGoogle Scholar
  65. [65]
    J.C. Polkinghorne, Inclusive cross-sections and discontinuities, Nuovo Cim. A 7 (1972) 555 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Caron-Huot and M. Wilhelm, Renormalization group coefficients and the S-matrix, JHEP 12 (2016) 010 [arXiv:1607.06448] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A.V. Smirnov and A.V. Petukhov, The Number of Master Integrals is Finite, Lett. Math. Phys. 97 (2011) 37 [arXiv:1004.4199] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11 (2013) 165 [arXiv:1308.6676] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    A.V. Kotikov, Differential equations method: The Calculation of vertex type Feynman diagrams, Phys. Lett. B 259 (1991) 314 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [INSPIRE].
  72. [72]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  73. [73]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
  74. [74]
    P. Federbush, Calculation of some homology groups relevant to sixth-order Feynman diagrams, J. Math. Phys. 6 (1965) 941.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    A. Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, alg-geom/9601021.

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.School of MathematicsTrinity CollegeDublin 2Ireland
  3. 3.Hamilton Mathematics InstituteTrinity CollegeDublin 2Ireland
  4. 4.Institut de Physique Théorique, Université Paris Saclay, CEA, CNRSGif-sur-YvetteFrance
  5. 5.Theoretical Physics DepartmentCERNGenevaSwitzerland
  6. 6.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  7. 7.Higgs Centre for Theoretical Physics, School of Physics and AstronomyUniversity of EdinburghEdinburghU.K.

Personalised recommendations