Skip to main content
Log in

Flavor mediation delivers natural SUSY

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If supersymmetry (SUSY) solves the hierarchy problem, then naturalness considerations coupled with recent LHC bounds require non-trivial superpartner flavor structures. Such “Natural SUSY” models exhibit a large mass hierarchy between scalars of the third and first two generations as well as degeneracy (or alignment) among the first two generations. In this work, we show how this specific beyond the standard model (SM) flavor structure can be tied directly to SM flavor via “Flavor Mediation”. The SM contains an anomaly-free SU(3) flavor symmetry, broken only by Yukawa couplings. By gauging this flavor symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via (Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum. Third-generation scalar masses are suppressed due to the dominant breaking of the flavor gauge symmetry in the top direction. More subtly, the first-two-generation scalars remain highly degenerate due to a custodial U(2) symmetry, where the SU(2) factor arises because SU(3) is rank two. This custodial symmetry is broken only at order (m c /m t )2. SUSY gauge coupling unification predictions are preserved, since no new charged matter is introduced, the SM gauge structure is unaltered, and the flavor symmetry treats all matter multiplets equally. Moreover, the uniqueness of the anomaly-free SU(3) flavor group makes possible a number of concrete predictions for the superpartner spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

  2. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    Article  ADS  Google Scholar 

  3. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  4. S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [INSPIRE].

    ADS  Google Scholar 

  6. P. Pouliot and N. Seiberg, (S)quark masses and nonAbelian horizontal symmetries, Phys. Lett. B 318 (1993) 169 [hep-ph/9308363] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Barbieri, L.J. Hall and A. Strumia, Hadronic flavor and CP-violating signals of superunification, Nucl. Phys. B 449 (1995) 437 [hep-ph/9504373] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Dvali and A. Pomarol, Anomalous U(1) as a mediator of supersymmetry breaking, Phys. Rev. Lett. 77 (1996) 3728 [hep-ph/9607383] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [INSPIRE].

    Article  ADS  Google Scholar 

  13. D.E. Kaplan, F. Lepeintre, A. Masiero, A.E. Nelson and A. Riotto, Fermion masses and gauge mediated supersymmetry breaking from a single U(1), Phys. Rev. D 60 (1999) 055003 [hep-ph/9806430] [INSPIRE].

    ADS  Google Scholar 

  14. D.E. Kaplan and G.D. Kribs, Phenomenology of flavor mediated supersymmetry breaking, Phys. Rev. D 61 (2000) 075011 [hep-ph/9906341] [INSPIRE].

    ADS  Google Scholar 

  15. M. Gabella, T. Gherghetta and J. Giedt, A gravity dual and LHC study of single-sector supersymmetry breaking, Phys. Rev. D 76 (2007) 055001 [arXiv:0704.3571] [INSPIRE].

    ADS  Google Scholar 

  16. R. Sundrum, SUSY splits, but then returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Zhuridov, Minimal flavour violation with hierarchical squark masses, JHEP 12 (2010) 070 [Erratum ibid. 1102 (2011) 044] [arXiv:1011.0730] [INSPIRE].

  19. N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K.S. Jeong, J.E. Kim and M.-S. Seo, Gauge mediation to effective SUSY through U(1)s with a dynamical SUSY breaking and string compactification, Phys. Rev. D 84 (2011) 075008 [arXiv:1107.5613] [INSPIRE].

    ADS  Google Scholar 

  22. R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy flavor simplified models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].

    Article  ADS  Google Scholar 

  23. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].

  25. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Delgado and M. Quirós, The least supersymmetric standard model, Phys. Rev. D 85 (2012) 015001 [arXiv:1111.0528] [INSPIRE].

    ADS  Google Scholar 

  27. N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M.A. Ajaib, T. Li and Q. Shafi, Stop-neutralino coannihilation in the light of LHC, Phys. Rev. D 85 (2012) 055021 [arXiv:1111.4467] [INSPIRE].

    ADS  Google Scholar 

  30. K. Ishiwata, N. Nagata and N. Yokozaki, Natural supersymmetry and bsγ constraints, Phys. Lett. B 710 (2012) 145 [arXiv:1112.1944] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Lodone, A motivated non-standard supersymmetric spectrum, arXiv:1112.2178 [INSPIRE].

  32. B. He, T. Li and Q. Shafi, Impact of LHC searches on light top squark, arXiv:1112.4461 [INSPIRE].

  33. A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  34. R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, arXiv:1201.1293 [INSPIRE].

  36. N. Craig, M. McCullough and J. Thaler, The new flavor of higgsed gauge mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Larsen, Y. Nomura and H.L. Roberts, Supersymmetry with light stops, arXiv:1202.6339 [INSPIRE].

  38. N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].

    Article  ADS  Google Scholar 

  39. Y. Shadmi and P.Z. Szabo, Flavored gauge-mediation, arXiv:1103.0292 [INSPIRE].

  40. B. Grinstein, M. Redi and G. Villadoro, Low scale flavor gauge symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Guadagnoli, R.N. Mohapatra and I. Sung, Gauged flavor group with left-right symmetry, JHEP 04 (2011) 093 [arXiv:1103.4170] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E. Gorbatov and M. Sudano, Sparticle masses in higgsed gauge mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J. Chkareuli, Quark-lepton families: from SU(5) to SU(8) symmetry, JETP Lett. 32 (1980) 671 [INSPIRE].

    ADS  Google Scholar 

  44. Z. Berezhiani and J. Chkareuli, Mass of the t quark and the number of quark lepton generations, JETP Lett. 35 (1982) 612 [Erratum ibid. 36 (1982) 380] [INSPIRE].

  45. Z. Berezhiani, The weak mixing angles in gauge models with horizontal symmetry: a new approach to quark and lepton masses, Phys. Lett. B 129 (1983) 99 [INSPIRE].

    Article  ADS  Google Scholar 

  46. Z. Berezhiani, Horizontal symmetry and quark-lepton mass spectrum: the SU(5) × SU(3)-h model, Phys. Lett. B 150 (1985) 177 [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Anselm and Z. Berezhiani, Could neutrinos with masses of a few KeV be shortlived?, Phys. Lett. B 162 (1985) 349 [INSPIRE].

    Article  ADS  Google Scholar 

  48. Z. Berezhiani, Unified picture of the particle and sparticle masses in SUSY GUT, Phys. Lett. B 417 (1998) 287 [hep-ph/9609342] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Soldate, M.H. Reno and C.T. Hill, Nonabelian family symmetry and the origin of fermion masses and mixing angles, Phys. Lett. B 179 (1986) 95 [INSPIRE].

    Article  ADS  Google Scholar 

  50. Y. Koide and S. Oneda, Lepton masses and SU(3) family symmetry breaking, Phys. Rev. D 36 (1987) 2867 [INSPIRE].

    ADS  Google Scholar 

  51. Z. Berezhiani and A. Rossi, Predictive grand unified textures for quark and neutrino masses and mixings, Nucl. Phys. B 594 (2001) 113 [hep-ph/0003084] [INSPIRE].

    Article  ADS  Google Scholar 

  52. R. Kitano and Y. Mimura, Large angle MSW solution in grand unified theories with SU(3) × U(1) horizontal symmetry, Phys. Rev. D 63 (2001) 016008 [hep-ph/0008269] [INSPIRE].

    ADS  Google Scholar 

  53. S. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520 (2001) 243 [hep-ph/0108112] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574 (2003) 239 [hep-ph/0307190] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [INSPIRE].

    ADS  Google Scholar 

  56. Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [INSPIRE].

    Article  ADS  Google Scholar 

  57. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, arXiv:1112.3068 [INSPIRE].

  58. A. Delgado, C. Kolda, J.P. Olson and A. de la Puente, Solving the little hierarchy problem with a singlet and explicit μ terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282] [INSPIRE].

    Article  ADS  Google Scholar 

  59. N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, JHEP 11 (2011) 145 [arXiv:1106.2164] [INSPIRE].

    Article  ADS  Google Scholar 

  60. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

    Article  ADS  Google Scholar 

  64. S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [INSPIRE].

    Article  ADS  Google Scholar 

  65. T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].

  66. F. Borzumati, C. Greub, T. Hurth and D. Wyler, Gluino contribution to radiative B decays: Organization of QCD corrections and leading order results, Phys. Rev. D 62 (2000) 075005 [hep-ph/9911245] [INSPIRE].

    ADS  Google Scholar 

  67. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. C. Cheung, J. Mardon, Y. Nomura and J. Thaler, A definitive signal of multiple supersymmetry breaking, JHEP 07 (2010) 035 [arXiv:1004.4637] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. McCullough, Stimulated supersymmetry breaking, Phys. Rev. D 82 (2010) 115016 [arXiv:1010.3203] [INSPIRE].

    ADS  Google Scholar 

  70. M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [INSPIRE].

    Article  ADS  Google Scholar 

  71. N.J. Craig and D.R. Green, Sequestering the gravitino: neutralino dark matter in gauge mediation, Phys. Rev. D 79 (2009) 065030 [arXiv:0808.1097] [INSPIRE].

    ADS  Google Scholar 

  72. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. M. Buican and Z. Komargodski, Soft terms from broken symmetries, JHEP 02 (2010) 005 [arXiv:0909.4824] [INSPIRE].

    Article  ADS  Google Scholar 

  74. P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. G. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].

    Article  ADS  Google Scholar 

  76. N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].

    ADS  Google Scholar 

  77. S. Nibbelink Groot and T.S. Nyawelo, Two loop effective Kähler potential of (non-)renormalizable supersymmetric models, JHEP 01 (2006) 034 [hep-th/0511004] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McCullough.

Additional information

ArXiv ePrint: 1203.1622

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, N., McCullough, M. & Thaler, J. Flavor mediation delivers natural SUSY. J. High Energ. Phys. 2012, 46 (2012). https://doi.org/10.1007/JHEP06(2012)046

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)046

Keywords

Navigation