Flavor mediation delivers natural SUSY

  • Nathaniel Craig
  • Matthew McCulloughEmail author
  • Jesse Thaler


If supersymmetry (SUSY) solves the hierarchy problem, then naturalness considerations coupled with recent LHC bounds require non-trivial superpartner flavor structures. Such “Natural SUSY” models exhibit a large mass hierarchy between scalars of the third and first two generations as well as degeneracy (or alignment) among the first two generations. In this work, we show how this specific beyond the standard model (SM) flavor structure can be tied directly to SM flavor via “Flavor Mediation”. The SM contains an anomaly-free SU(3) flavor symmetry, broken only by Yukawa couplings. By gauging this flavor symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via (Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum. Third-generation scalar masses are suppressed due to the dominant breaking of the flavor gauge symmetry in the top direction. More subtly, the first-two-generation scalars remain highly degenerate due to a custodial U(2) symmetry, where the SU(2) factor arises because SU(3) is rank two. This custodial symmetry is broken only at order (m c /m t )2. SUSY gauge coupling unification predictions are preserved, since no new charged matter is introduced, the SM gauge structure is unaltered, and the flavor symmetry treats all matter multiplets equally. Moreover, the uniqueness of the anomaly-free SU(3) flavor group makes possible a number of concrete predictions for the superpartner spectrum.


Supersymmetry Breaking Supersymmetric Standard Model 


  1. [1]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].ADSGoogle Scholar
  4. [4]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Pouliot and N. Seiberg, (S)quark masses and nonAbelian horizontal symmetries, Phys. Lett. B 318 (1993) 169 [hep-ph/9308363] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Barbieri, L.J. Hall and A. Strumia, Hadronic flavor and CP-violating signals of superunification, Nucl. Phys. B 449 (1995) 437 [hep-ph/9504373] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Dvali and A. Pomarol, Anomalous U(1) as a mediator of supersymmetry breaking, Phys. Rev. Lett. 77 (1996) 3728 [hep-ph/9607383] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D.E. Kaplan, F. Lepeintre, A. Masiero, A.E. Nelson and A. Riotto, Fermion masses and gauge mediated supersymmetry breaking from a single U(1), Phys. Rev. D 60 (1999) 055003 [hep-ph/9806430] [INSPIRE].ADSGoogle Scholar
  14. [14]
    D.E. Kaplan and G.D. Kribs, Phenomenology of flavor mediated supersymmetry breaking, Phys. Rev. D 61 (2000) 075011 [hep-ph/9906341] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Gabella, T. Gherghetta and J. Giedt, A gravity dual and LHC study of single-sector supersymmetry breaking, Phys. Rev. D 76 (2007) 055001 [arXiv:0704.3571] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Sundrum, SUSY splits, but then returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Zhuridov, Minimal flavour violation with hierarchical squark masses, JHEP 12 (2010) 070 [Erratum ibid. 1102 (2011) 044] [arXiv:1011.0730] [INSPIRE].
  19. [19]
    N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.S. Jeong, J.E. Kim and M.-S. Seo, Gauge mediation to effective SUSY through U(1)s with a dynamical SUSY breaking and string compactification, Phys. Rev. D 84 (2011) 075008 [arXiv:1107.5613] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy flavor simplified models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].
  25. [25]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Delgado and M. Quirós, The least supersymmetric standard model, Phys. Rev. D 85 (2012) 015001 [arXiv:1111.0528] [INSPIRE].ADSGoogle Scholar
  27. [27]
    N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.A. Ajaib, T. Li and Q. Shafi, Stop-neutralino coannihilation in the light of LHC, Phys. Rev. D 85 (2012) 055021 [arXiv:1111.4467] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Ishiwata, N. Nagata and N. Yokozaki, Natural supersymmetry and bsγ constraints, Phys. Lett. B 710 (2012) 145 [arXiv:1112.1944] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Lodone, A motivated non-standard supersymmetric spectrum, arXiv:1112.2178 [INSPIRE].
  32. [32]
    B. He, T. Li and Q. Shafi, Impact of LHC searches on light top squark, arXiv:1112.4461 [INSPIRE].
  33. [33]
    A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, arXiv:1201.1293 [INSPIRE].
  36. [36]
    N. Craig, M. McCullough and J. Thaler, The new flavor of higgsed gauge mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Larsen, Y. Nomura and H.L. Roberts, Supersymmetry with light stops, arXiv:1202.6339 [INSPIRE].
  38. [38]
    N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Shadmi and P.Z. Szabo, Flavored gauge-mediation, arXiv:1103.0292 [INSPIRE].
  40. [40]
    B. Grinstein, M. Redi and G. Villadoro, Low scale flavor gauge symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Guadagnoli, R.N. Mohapatra and I. Sung, Gauged flavor group with left-right symmetry, JHEP 04 (2011) 093 [arXiv:1103.4170] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Gorbatov and M. Sudano, Sparticle masses in higgsed gauge mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Chkareuli, Quark-lepton families: from SU(5) to SU(8) symmetry, JETP Lett. 32 (1980) 671 [INSPIRE].ADSGoogle Scholar
  44. [44]
    Z. Berezhiani and J. Chkareuli, Mass of the t quark and the number of quark lepton generations, JETP Lett. 35 (1982) 612 [Erratum ibid. 36 (1982) 380] [INSPIRE].
  45. [45]
    Z. Berezhiani, The weak mixing angles in gauge models with horizontal symmetry: a new approach to quark and lepton masses, Phys. Lett. B 129 (1983) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Z. Berezhiani, Horizontal symmetry and quark-lepton mass spectrum: the SU(5) × SU(3)-h model, Phys. Lett. B 150 (1985) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Anselm and Z. Berezhiani, Could neutrinos with masses of a few KeV be shortlived?, Phys. Lett. B 162 (1985) 349 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Z. Berezhiani, Unified picture of the particle and sparticle masses in SUSY GUT, Phys. Lett. B 417 (1998) 287 [hep-ph/9609342] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Soldate, M.H. Reno and C.T. Hill, Nonabelian family symmetry and the origin of fermion masses and mixing angles, Phys. Lett. B 179 (1986) 95 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Y. Koide and S. Oneda, Lepton masses and SU(3) family symmetry breaking, Phys. Rev. D 36 (1987) 2867 [INSPIRE].ADSGoogle Scholar
  51. [51]
    Z. Berezhiani and A. Rossi, Predictive grand unified textures for quark and neutrino masses and mixings, Nucl. Phys. B 594 (2001) 113 [hep-ph/0003084] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Kitano and Y. Mimura, Large angle MSW solution in grand unified theories with SU(3) × U(1) horizontal symmetry, Phys. Rev. D 63 (2001) 016008 [hep-ph/0008269] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520 (2001) 243 [hep-ph/0108112] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574 (2003) 239 [hep-ph/0307190] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [INSPIRE].ADSGoogle Scholar
  56. [56]
    Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, arXiv:1112.3068 [INSPIRE].
  58. [58]
    A. Delgado, C. Kolda, J.P. Olson and A. de la Puente, Solving the little hierarchy problem with a singlet and explicit μ terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, JHEP 11 (2011) 145 [arXiv:1106.2164] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Effects of supergravity induced electroweak breaking on rare B decays and mixings, Nucl. Phys. B 353 (1991) 591 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
  66. [66]
    F. Borzumati, C. Greub, T. Hurth and D. Wyler, Gluino contribution to radiative B decays: Organization of QCD corrections and leading order results, Phys. Rev. D 62 (2000) 075005 [hep-ph/9911245] [INSPIRE].ADSGoogle Scholar
  67. [67]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    C. Cheung, J. Mardon, Y. Nomura and J. Thaler, A definitive signal of multiple supersymmetry breaking, JHEP 07 (2010) 035 [arXiv:1004.4637] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. McCullough, Stimulated supersymmetry breaking, Phys. Rev. D 82 (2010) 115016 [arXiv:1010.3203] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    N.J. Craig and D.R. Green, Sequestering the gravitino: neutralino dark matter in gauge mediation, Phys. Rev. D 79 (2009) 065030 [arXiv:0808.1097] [INSPIRE].ADSGoogle Scholar
  72. [72]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    M. Buican and Z. Komargodski, Soft terms from broken symmetries, JHEP 02 (2010) 005 [arXiv:0909.4824] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  75. [75]
    G. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S. Nibbelink Groot and T.S. Nyawelo, Two loop effective Kähler potential of (non-)renormalizable supersymmetric models, JHEP 01 (2006) 034 [hep-th/0511004] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Nathaniel Craig
    • 1
    • 2
  • Matthew McCullough
    • 3
    Email author
  • Jesse Thaler
    • 3
  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  3. 3.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations