Skip to main content
Log in

Simulation of Quantum Tomography Process of Biphoton Polarization States on a Quantum Computer

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The process of quantum tomography of polarization-entangled photon pairs was simulated on quantum computers of different generations of the IBM Q Experience platform. The simulation was carried out for all four two-qubit Bell states. It turned out that the contribution of basis states that are absent in Bell states does not exceed 10\(\%\) even on quantum computers of the first generations, and is reduced to several percent on quantum computers of the latest generation. The simulation quality was evaluated using Fidelity. The Fidelity values were in a range of 68.6–94.9\(\%\), depending on the generation of computers. It was shown that for Bell states Fidelity can be calculated using three tomographic measurements instead of the nine required for determination of the density matrix using quantum state tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. T. D. Ladd, F. Jelezko, R. Laflamme, et al., Nature (London, U.K.) 464, 45 (2010).

    Article  ADS  Google Scholar 

  2. J. Q. You and F. Nori, Nature (London, U.K.) 474, 589 (2011).

    Article  ADS  Google Scholar 

  3. L. Gyongyosi and S. Imre, Comput. Sci. Rev. 31, 51 (2019).

    Article  MathSciNet  Google Scholar 

  4. Y. Zhou, E. M. Stoudenmire, and X. Waintal, Phys. Rev. X 10, 041038 (2020).

    Google Scholar 

  5. F. Arute, K. Arya, K. Babbush, et al., Nature (London, U.K.) 574 (7779), 505 (2019).

    Article  ADS  Google Scholar 

  6. H. S. Zhong, H. Wang, Y. H. Deng, et al., Science (Washington, DC, U. S.) 370 (6523), 1460 (2020).

    ADS  Google Scholar 

  7. M. Kjaergaard, M. E. Schwartz, J. Braumьller, et al., Ann. Rev. Condens. Matter Phys. 11, 369 (2020).

    Article  Google Scholar 

  8. H. L. Huang, D. Wu, D. Fan, et al., Sci. China Inf. Sci. 63, 180501 (2020).

    Article  MathSciNet  Google Scholar 

  9. R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).

    Article  Google Scholar 

  10. C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Appl. Phys. Rev. 6, 021314 (2019).

    Article  ADS  Google Scholar 

  11. I. Beterov, Optoelectron. Instrum. Proc. 56, 317 (2020).

    Article  Google Scholar 

  12. J. L. O’Brien, Science (Washington, DC, U. S.) 318 (5856), 1567 (2007).

    Article  ADS  Google Scholar 

  13. P. Kok, W. J. Munro, K. Nemoto, et al., Rev. Mod. Phys. 79, 135 (2007).

    Article  ADS  Google Scholar 

  14. R. Orus, M. Samuel, and E. Lizaso, Rev. Phys. 4, 100028 (2019).

    Article  Google Scholar 

  15. S. McArdle, S. Endo, and A. Aspuru-Guzik, Rev. Mod. Phys. 91, 015003 (2020).

    Article  ADS  Google Scholar 

  16. J. Zhang, G. Pagano, P. W. Hess, et al., Nature (London, U. K.) 551 (7682), 601 (2017).

    Article  ADS  Google Scholar 

  17. V. Dunjko and P. Wittek, Quantum Views 4, 32 (2020).

    Article  Google Scholar 

  18. P. Kim, D. Han, and K. Jeong, Quant. Inf. Proc. 17 (12), 339 (2018).

    Article  Google Scholar 

  19. C. Sabin, Quant. Rep. 2, 208 (2020).

    Article  Google Scholar 

  20. T. R. Bromley, J. M. Arrazola, S. Jahangiri, et al., Quant. Sci. Technol. 5, 034010 (2020).

    Article  ADS  Google Scholar 

  21. https://qiskit.org.

  22. S. Rahimi-Keshari, T. C. Ralph, and C. M. Caves, Phys. Rev. X 6, 021039 (2016).

    Google Scholar 

  23. M. Kapil, B. K. Behera, and P. K. Panigrahi, arXiv: 1807.00521 (2018).

  24. J. Preskill, Quantum 2, 79 (2018).

    Article  Google Scholar 

  25. B. Nachman, M. Urbanek, W. de Jong, et al., NPJ Quant. Inf. 6 (1), 1 (2020).

    Article  Google Scholar 

  26. S. A. Magnitskiy, D. N. Frolovtsev, V. V. Firsov, et al., J. Russ. Laser Res. 36, 618 (2015).

    Article  Google Scholar 

  27. D. N. Frolovtsev, S. A. Magnitskiy, and A. V. Demin, Meas. Tech. 63, 273 (2020).

    Article  Google Scholar 

  28. R. Josza, J. Mod. Opt. 41, 2315 (1994).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank professor V.M. Gordienko for support of the work and professor A.S. Chirkin for discussion of the results and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Manko.

Additional information

Translated by E. Baldina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manko, S.D., Frolovtsev, D.N. & Magnitsky, S.A. Simulation of Quantum Tomography Process of Biphoton Polarization States on a Quantum Computer. Moscow Univ. Phys. 76, 97–103 (2021). https://doi.org/10.3103/S0027134921020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134921020065

Keywords:

Navigation