Skip to main content
Log in

Measurement Method of the Polarization-Entangled States of Biphotons Using a Quantum Tomograph

  • OPTOPHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

Statistical analysis was done on the errors of tomographic measurements of polarization-entangled states of biphotons, which are generated by sources based on the effect of spontaneous parametric light down-conversion. The level of quantum fluctuations in the coincidence circuit that are an unremovable source of error in tomographic measurements was analyzed in detail. The density matrix of the quantum polarization state of biphotons in a polarized Bell state was measured by means of a quantum tomograph. Instrumental errors were compared with errors caused by quantum fluctuations. It is shown that there are no hindrances to the creation of a tomographic metrological test station designed for the characterization of sources of spontaneous parametric down-conversion of light that generate polarization-entangled biphotons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. R. Kok et al., Rev. Mod. Phys., 79, No. 1, 135 (2007), https://doi.org/10.1103/RevModPhys.79.135.

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Gisin and R.Thew, Nat. Photonics, 1, No. 3, 165 (2007), https://doi.org/10.1038/nphoton.2007.22.

    Article  ADS  Google Scholar 

  3. P. G. Kwiat, K. Mattie, H. Weinfurter, et al., Phys. Rev. Lett., 75, 4337 (2005), https://doi.org/10.1103/PhysRevLett.75.4337.

    Article  ADS  Google Scholar 

  4. J. L. O'Brien, A. Furusawa, and E. Vučković, Nat. Photonics, 3, No. 12, 687 (2009), https://doi.org/10.1038/nphoton.2009.229.

    Article  ADS  Google Scholar 

  5. S. A. Magnitskii, D. N. Frolovtsev, D. P. Agapov, et al., "Metrology of single photons for quantum information technologies," Izmer. Tekhn., No. 3, 24–29 (2017), 10.32446/0368-1025it.2017-3-24-29.

  6. B. Sussman et al., Quant. Sci. Tech., 4, No. 2, 020503 (2019), https://doi.org/10.1088/2058-9565/ab029d.

    Article  Google Scholar 

  7. M. Riedel et al., Quant. Sci. Tech., 4, No. 2, 020501 (2019), https://doi.org/10.1088/2058-9565/ab042d.

    Article  Google Scholar 

  8. C. Monroe, M. G. Raymer, and J. Taylor, Science, 364, No. 6439, 440–442 (2019), https://doi.org/10.1126/science.aax0578.

    Article  ADS  Google Scholar 

  9. Y. Yamamoto, M. Sasaki, and H. Takesue, Quant. Sci. Tech., 4, No. 2, 020502 (2019), https://doi.org/10.1088/2058-9565/ab0077.

    Article  Google Scholar 

  10. M. G. Raymer and C. Monroe, Quant. Sci. Tech., 4, No. 2, 020504 (2019), https://doi.org/10.1088/2058-9565/ab0441.

    Article  Google Scholar 

  11. D. N. Klyshko, Photons and Non-Linear Optics, Nauka, Moscow (1980).

    Google Scholar 

  12. D. N. Klyshko, "Coherent decay of photons in a non-linear medium," Pisma v ZhETF, 6, No. 1, 490–492 (1967).

    Google Scholar 

  13. P. G. Kwiat et al., Phys. Rev. A, 60, No. 2, R773 (1999), https://doi.org/10.1103/PhysRevA.60.R773.

    Article  ADS  Google Scholar 

  14. S. Magnitskiy, D. Frolovtsev, V. Firsov, et al., J. Russ. Laser Res., 36, No. 6, 618–629 (2015), https://doi.org/10.1007/s10946-015-9540-x.

    Article  Google Scholar 

  15. D. N. Frolovtsev and S. A. Magnitskiy, Phys. Wave Phenom., 25, No. 3, 180–184 (2017), https://doi.org/10.3103/S1541308X17030049.

    Article  ADS  Google Scholar 

  16. D. N. Frolovtsev, S. A. Magnitskii, and A. V. Demin, "A quantum tomograph for measurement and characterization of biphoton sources," Izmer. Tekhn., No. 4, 20–26 (2020), https://doi.org/10.32446/0368-1025it.2020-4-20-26.

  17. P. P. Gostev, D. P. Agapov, A. V. Demin, et al, "Measurement of the quantum efficiency of photon counters based on avalanche photodiodes by the spontaneous parametric down-conversion method with channels asymmetric in the spectrum," Izmer. Tekhn., No. 12, 27–32 (2018), https://doi.org/10.32446/0368-1025it.2018-12-27-32.

  18. D. F. V. James et al., Phys. Rev. A, 64, No. 5, 052312 (2001), https://doi.org/10.1103/PhysRevA.64.052312.

    Article  ADS  Google Scholar 

  19. P. P. Gostev, S. A. Magnitskii, and A. S. Chirkin, The Inverse Problem of the Statistics of Photon Counters, MGU, Moscow (2020).

    Google Scholar 

  20. J. A. Abate, H. J. Kimble, and L. Mandel, Phys. Rev. A, 14, No. 2, 788 (1976), https://doi.org/10.1103/PhysRevA.14.788.

    Article  ADS  Google Scholar 

  21. R. Jozsa, J. Mod. Optic., 41, No. 12, 2315–2323 (1994), https://doi.org/10.1080/09500349414552171.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Frolovtsev.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 10, pp. 21–27, October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolovtsev, D.N., Magnitskii, S.A. & Demin, A.V. Measurement Method of the Polarization-Entangled States of Biphotons Using a Quantum Tomograph. Meas Tech 64, 809–816 (2022). https://doi.org/10.1007/s11018-022-02008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-022-02008-5

Keywords

Navigation