Skip to main content
Log in

Superconducting quantum computing: a review

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Over the last two decades, tremendous advances have been made for constructing large-scale quantum computers. In particular, quantum computing platforms based on superconducting qubits have become the leading candidate for scalable quantum processor architecture, and the milestone of demonstrating quantum supremacy has been first achieved using 53 superconducting qubits in 2019. In this study, we provide a brief review on the experimental efforts towards the large-scale superconducting quantum computer, including qubit design, quantum control, readout techniques, and the implementations of error correction and quantum algorithms. Besides the state of the art, we finally discuss future perspectives, and which we hope will motivate further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994. 124–134

  2. Boixo S, Isakov S V, Smelyanskiy V N, et al. Characterizing quantum supremacy in near-term devices. Nat Phys, 2018, 14: 595–600

    Article  Google Scholar 

  3. Georgescu I M, Ashhab S, Nori F. Quantum simulation. Rev Mod Phys, 2014, 86: 153–185

    Article  Google Scholar 

  4. Biamonte J, Wittek P, Pancotti N, et al. Quantum machine learning. Nature, 2017, 549: 195–202

    Article  Google Scholar 

  5. Wright K, Beck K M, Debnath S, et al. Benchmarking an 11-qubit quantum computer. Nat Commun, 2019, 10: 1–6

    Article  Google Scholar 

  6. Wang X L, Luo Y H, Huang H L, et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys Rev Lett, 2018, 120: 260502

    Article  Google Scholar 

  7. Wang X L, Chen L K, Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117: 210502

    Article  Google Scholar 

  8. Huang H L, Wang X L, Rohde P P, et al. Demonstration of topological data analysis on a quantum processor. Optica, 2018, 5: 193–198

    Article  Google Scholar 

  9. Huang H L, Zhao Q, Ma X, et al. Experimental blind quantum computing for a classical client. Phys Rev Lett, 2017, 119: 050503

    Article  Google Scholar 

  10. Wang H, Qin J, Ding X, et al. Boson sampling with 20 input photons in 60-mode interferometers at 1014 state spaces. 2019. ArXiv: 1910.09930

  11. Gong M, Chen M C, Zheng Y, et al. Genuine 12-qubit entanglement on a superconducting quantum processor. Phys Rev Lett, 2019, 122: 110501

    Article  Google Scholar 

  12. Ye Y, Ge Z Y, Wu Y, et al. Propagation and localization of collective excitations on a 24-qubit superconducting processor. Phys Rev Lett, 2019, 123: 050502

    Article  Google Scholar 

  13. Song C, Xu K, Li H, et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science, 2019, 365: 574–577

    Article  MathSciNet  Google Scholar 

  14. Omran A, Levine H, Keesling A, et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science, 2019, 365: 570–574

    Article  MathSciNet  Google Scholar 

  15. Zhang J, Pagano G, Hess P W, et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature, 2017, 551: 601–604

    Article  Google Scholar 

  16. Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574: 505–510

    Article  Google Scholar 

  17. Preskill J. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79

    Article  Google Scholar 

  18. Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions. Rev Mod Phys, 2003, 75: 281–324

    Article  Google Scholar 

  19. Blatt R, Roos C F. Quantum simulations with trapped ions. Nat Phys, 2012, 8: 277–284

    Article  Google Scholar 

  20. Krantz P, Kjaergaard M, Yan F, et al. A quantum engineer’s guide to superconducting qubits. Appl Phys Rev, 2019, 6: 021318

    Article  Google Scholar 

  21. Kjaergaard M, Schwartz M E, Braumuöller J, et al. Superconducting qubits: current state of play. Annu Rev Condensed Matter Phys, 2019, 11: 369–395

    Article  Google Scholar 

  22. Kane B E. A silicon-based nuclear spin quantum computer. Nature, 1998, 393: 133–137

    Article  Google Scholar 

  23. He Y, Gorman S K, Keith D, et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature, 2019, 571: 371–375

    Article  Google Scholar 

  24. Nakamura Y, Pashkin Y A, Tsai J S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 1999, 398: 786–788

    Article  Google Scholar 

  25. Barends R, Kelly J, Megrant A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 2014, 508: 500–503

    Article  Google Scholar 

  26. Fowler A G, Mariantoni M, Martinis J M, et al. Surface codes: towards practical large-scale quantum computation. Phys Rev A, 2012, 86: 032324

    Article  Google Scholar 

  27. DiVincenzo D P. The physical implementation of quantum computation. Fortschr Phys, 2000, 48: 771–783

    Article  MATH  Google Scholar 

  28. Bouchiat V, Vion D, Joyez P, et al. Quantum coherence with a single cooper pair. Phys Scripta, 1998, 1998: 165

    Article  Google Scholar 

  29. Mooij J E. Josephson persistent-current qubit. Science, 1999, 285: 1036–1039

    Article  Google Scholar 

  30. Martinis J M. Superconducting phase qubits. Quantum Inf Process, 2009, 8: 81–103

    Article  Google Scholar 

  31. Koch J, Yu T M, Gambetta J, et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys Rev A, 2007, 76: 042319

    Article  Google Scholar 

  32. Barends R, Kelly J, Megrant A, et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys Rev Lett, 2013, 111: 080502

    Article  Google Scholar 

  33. Chen Y, Neill C, Roushan P, et al. Qubit architecture with high coherence and fast tunable coupling. Phys Rev Lett, 2014, 113: 220502

    Article  Google Scholar 

  34. Yan F, Krantz P, Sung Y, et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys Rev Appl, 2018, 10: 054062

    Article  Google Scholar 

  35. Paik H, Schuster D I, Bishop L S, et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys Rev Lett, 2011, 107: 240501

    Article  Google Scholar 

  36. You J Q, Hu X, Ashhab S, et al. Low-decoherence flux qubit. Phys Rev B, 2007, 75: 140515

    Article  Google Scholar 

  37. Manucharyan V E, Koch J, Glazman L I, et al. Fluxonium: single cooper-pair circuit free of charge offsets. Science, 2009, 326: 113–116

    Article  Google Scholar 

  38. Kitaev A. Protected qubit based on a superconducting current mirror. 2006. ArXiv: cond-mat/0609441

  39. Brooks P, Kitaev A, Preskill J. Protected gates for superconducting qubits. Phys Rev A, 2013, 87: 052306

    Article  Google Scholar 

  40. Gyenis A, Mundada P, Paolo A D, et al. Experimental realization of an intrinsically error-protected superconducting qubit. 2019. ArXiv: 1910.07542

  41. Marcos D, Wubs M, Taylor J M, et al. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys Rev Lett, 2010, 105: 210501

    Article  Google Scholar 

  42. Zhu X, Saito S, Kemp A, et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature, 2011, 478: 221–224

    Article  Google Scholar 

  43. Kubo Y, Grezes C, Dewes A, et al. Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. Phys Rev Lett, 2011, 107: 220501

    Article  Google Scholar 

  44. Schuster D I, Sears A P, Ginossar E, et al. High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys Rev Lett, 2010, 105: 140501

    Article  Google Scholar 

  45. Kubo Y, Ong F R, Bertet P, et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys Rev Lett, 2010, 105: 140502

    Article  Google Scholar 

  46. Amsüss R, Koller C, Nöbauer T, et al. Cavity QED with magnetically coupled collective spin states. Phys Rev Lett, 2011, 107: 060502

    Article  Google Scholar 

  47. DiCarlo L, Reed M D, Sun L, et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature, 2010, 467: 574–578

    Article  Google Scholar 

  48. Fedorov A, Feofanov A K, Macha P, et al. Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. Phys Rev Lett, 2010, 105: 060503

    Article  Google Scholar 

  49. Steffen M, Kumar S, DiVincenzo D P, et al. High-coherence hybrid superconducting qubit. Phys Rev Lett, 2010, 105: 100502

    Article  Google Scholar 

  50. Hoffman A J, Srinivasan S J, Gambetta J M, et al. Coherent control of a superconducting qubit with dynamically tunable qubit-cavity coupling. Phys Rev B, 2011, 84: 184515

    Article  Google Scholar 

  51. Bylander J, Gustavsson S, Yan F, et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat Phys, 2011, 7: 565–570

    Article  Google Scholar 

  52. Córcoles A, Chow J M, Gambetta J M, et al. Protecting superconducting qubits from radiation. Appl Phys Lett, 2011, 99: 181906

    Article  Google Scholar 

  53. Chow J M, Gambetta J M, Córcoles A D, et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys Rev Lett, 2012, 109: 060501

    Article  Google Scholar 

  54. Rigetti C, Gambetta J M, Poletto S, et al. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys Rev B, 2012, 86: 100506

    Article  Google Scholar 

  55. Manucharyan V E, Masluk N A, Kamal A, et al. Evidence for coherent quantum phase slips across a Josephson junction array. Phys Rev B, 2012, 85: 024521

    Article  Google Scholar 

  56. Córcoles A D, Gambetta J M, Chow J M, et al. Process verification of two-qubit quantum gates by randomized benchmarking. Phys Rev A, 2013, 87: 030301

    Article  Google Scholar 

  57. Chow J M, Gambetta J M, Magesan E, et al. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat Commun, 2014, 5: 1–9

    Article  Google Scholar 

  58. Wang C, Gao Y Y, Pop I M, et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat Commun, 2014, 5: 1–7

    Google Scholar 

  59. Pop I M, Geerlings K, Catelani G, et al. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature, 2014, 508: 369–372

    Article  Google Scholar 

  60. Cóorcoles A, Magesan E, Srinivasan S, et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat Commun, 2015, 6: 1–10

    Article  Google Scholar 

  61. Takita M, Coórcoles A D, Magesan E, et al. Demonstration of weight-four parity measurements in the surface code architecture. Phys Rev Lett, 2016, 117: 210505

    Article  Google Scholar 

  62. Dial O, McClure D T, Poletto S, et al. Bulk and surface loss in superconducting transmon qubits. Supercond Sci Technol, 2016, 29: 044001

    Article  Google Scholar 

  63. Yan F, Gustavsson S, Kamal A, et al. The flux qubit revisited to enhance coherence and reproducibility. Nat Commun, 2016, 7: 1–9

    Google Scholar 

  64. Risté D, da Silva M P, Ryan C A, et al. Demonstration of quantum advantage in machine learning. npj Quantum Inf, 2017, 3: 16

    Article  Google Scholar 

  65. Tsioutsios I, Serniak K, Diamond S, et al. Free-standing silicon shadow masks for transmon qubit fabrication. 2019. ArXiv: 1911.05924

  66. Lucero E, Barends R, Chen Y, et al. Computing prime factors with a Josephson phase qubit quantum processor. Nat Phys, 2012, 8: 719–723

    Article  Google Scholar 

  67. Kelly J, Barends R, Fowler A G, et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 2015, 519: 66–69

    Article  Google Scholar 

  68. Song C, Xu K, Liu W, et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys Rev Lett, 2017, 119: 180511

    Article  Google Scholar 

  69. McKay D C, Filipp S, Mezzacapo A, et al. Universal gate for fixed-frequency qubits via a tunable bus. Phys Rev Appl, 2016, 6: 064007

    Article  Google Scholar 

  70. DiCarlo L, Chow J M, Gambetta J M, et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 2009, 460: 240–244

    Article  Google Scholar 

  71. Li S W, Castellano A D, Wang S Y, et al. Realisation of high-fidelity nonadiabatic CZ gates with superconducting qubits. npj Quantum Inf, 2019, 5: 1–7

    Article  Google Scholar 

  72. Barends R, Quintana C M, Petukhov A G, et al. Diabatic gates for frequency-tunable superconducting qubits. Phys Rev Lett, 2019, 123: 210501

    Article  Google Scholar 

  73. Rigetti C, Devoret M. Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies. Phys Rev B, 2010, 81: 134507

    Article  Google Scholar 

  74. Sheldon S, Magesan E, Chow J M, et al. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys Rev A, 2016, 93: 060302

    Article  Google Scholar 

  75. Beaudoin F, da Silva M P, Dutton Z, et al. First-order sidebands in circuit QED using qubit frequency modulation. Phys Rev A, 2012, 86: 022305

    Article  Google Scholar 

  76. Strand J D, Ware M, Beaudoin F, et al. First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys Rev B, 2013, 87: 220505

    Article  Google Scholar 

  77. Didier N, Sete E A, da Silva M P, et al. Analytical modeling of parametrically modulated transmon qubits. Phys Rev A, 2018, 97: 022330

    Article  Google Scholar 

  78. Hong S S, Papageorge A T, Sivarajah P, et al. Demonstration of a parametrically activated entangling gate protected from flux noise. Phys Rev A, 2020, 101: 012302

    Article  Google Scholar 

  79. Chu J, Li D Y, Yang X P, et al. Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits. 2019. ArXiv: 1906.02992

  80. Reagor M, Osborn C B, Tezak N, et al. Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci Adv, 2018, 4: eaao3603

    Article  Google Scholar 

  81. Paik H, Mezzacapo A, Sandberg M, et al. Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-QED system. Phys Rev Lett, 2016, 117: 250502

    Article  Google Scholar 

  82. Puri S, Blais A. High-fidelity resonator-induced phase gate with single-mode squeezing. Phys Rev Lett, 2016, 116: 180501

    Article  Google Scholar 

  83. Cross A W, Gambetta J M. Optimized pulse shapes for a resonator-induced phase gate. Phys Rev A, 2015, 91: 032325

    Article  Google Scholar 

  84. Neeley M, Bialczak R C, Lenander M, et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature, 2010, 467: 570–573

    Article  Google Scholar 

  85. Chow J M, Córcoles A D, Gambetta J M, et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys Rev Lett, 2011, 107: 080502

    Article  Google Scholar 

  86. Poletto S, Gambetta J M, Merkel S T, et al. Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation. Phys Rev Lett, 2012, 109: 240505

    Article  Google Scholar 

  87. Dewes A, Ong F R, Schmitt V, et al. Characterization of a two-transmon processor with individual single-shot qubit readout. Phys Rev Lett, 2012, 108: 057002

    Article  Google Scholar 

  88. Chow J M, Gambetta J M, Cross A W, et al. Microwave-activated conditional-phase gate for superconducting qubits. New J Phys, 2013, 15: 115012

    Article  Google Scholar 

  89. Song C, Zheng S B, Zhang P, et al. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat Commun, 2017, 8: 1061

    Article  Google Scholar 

  90. Caldwell S, Didier N, Ryan C A, et al. Parametrically activated entangling gates using transmon qubits. Phys Rev Appl, 2018, 10: 034050

    Article  Google Scholar 

  91. Rosenblum S, Gao Y Y, Reinhold P, et al. A CNOT gate between multiphoton qubits encoded in two cavities. Nat Commun, 2018, 9: 652

    Article  Google Scholar 

  92. Chou K S, Blumoff J Z, Wang C S, et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature, 2018, 561: 368–373

    Article  Google Scholar 

  93. Fedorov A, Steffen L, Baur M, et al. Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481: 170–172

    Article  Google Scholar 

  94. Nakamura Y, Pashkin Y A, Yamamoto T, et al. Coherent manipulations of charge-number states in a cooper-pair box. Phys Scripta, 1999, T102: 155

    Article  Google Scholar 

  95. van der Wal C H. Quantum superposition of macroscopic persistent-current states. Science, 2000, 290: 773–777

    Article  Google Scholar 

  96. Vion D. Manipulating the quantum state of an electrical circuit. Science, 2002, 296: 886–889

    Article  Google Scholar 

  97. Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431: 162–167

    Article  Google Scholar 

  98. Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev, 1946, 69: 37–38

    Article  Google Scholar 

  99. Reed M D, Johnson B R, Houck A A, et al. Fast reset and suppressing spontaneous emission of a superconducting qubit. Appl Phys Lett, 2010, 96: 203110

    Article  Google Scholar 

  100. Jeffrey E, Sank D, Mutus J Y, et al. Fast accurate state measurement with superconducting qubits. Phys Rev Lett, 2014, 112: 190504

    Article  Google Scholar 

  101. Bronn N T, Liu Y, Hertzberg J B, et al. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics. Appl Phys Lett, 2015, 107: 172601

    Article  Google Scholar 

  102. Walter T, Kurpiers P, Gasparinetti S, et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys Rev Appl, 2017, 7: 054020

    Article  Google Scholar 

  103. Hatridge M, Vijay R, Slichter D H, et al. Dispersive magnetometry with a quantum limited SQUID parametric amplifier. Phys Rev B, 2011, 83: 134501

    Article  Google Scholar 

  104. Mutus J Y, White T C, Jeffrey E, et al. Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line. Appl Phys Lett, 2013, 103: 122602

    Article  Google Scholar 

  105. Mutus J Y, White T C, Barends R, et al. Strong environmental coupling in a Josephson parametric amplifier. Appl Phys Lett, 2014, 104: 263513

    Article  Google Scholar 

  106. White T C, Mutus J Y, Hoi I C, et al. Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching. Appl Phys Lett, 2015, 106: 242601

    Article  Google Scholar 

  107. Vijay R, Macklin C, Slichter D H, et al. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature, 2012, 490: 77–80

    Article  Google Scholar 

  108. Campagne-Ibarcq P, Jezouin S, Cottet N, et al. Using spontaneous emission of a qubit as a resource for feedback control. Phys Rev Lett, 2016, 117: 060502

    Article  Google Scholar 

  109. Salathóe Y, Kurpiers P, Karg T, et al. Low-latency digital signal processing for feedback and feedforward in quantum computing and communication. Phys Rev Appl, 2018, 9: 034011

    Article  Google Scholar 

  110. Reed M D, DiCarlo L, Nigg S E, et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 2012, 482: 382–385

    Article  Google Scholar 

  111. Risté D, Poletto S, Huang M Z, et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat Commun, 2015, 6: 6983

    Article  Google Scholar 

  112. Andersen C K, Remm A, Balasiu S, et al. Entanglement stabilization using parity detection and real-time feedback in superconducting circuits. 2019. ArXiv: 1902.06946

  113. Andersen C K, Remm A, Lazar S, et al. Repeated quantum error detection in a surface code. 2019. ArXiv: 1912.09410

  114. Cochrane P T, Milburn G J, Munro W J. Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys Rev A, 1999, 59: 2631–2634

    Article  Google Scholar 

  115. Leghtas Z, Kirchmair G, Vlastakis B, et al. Hardware-efficient autonomous quantum memory protection. Phys Rev Lett, 2013, 111: 120501

    Article  Google Scholar 

  116. Michael M, Silveri M, Brierley R T, et al. New class of quantum error-correcting codes for a bosonic mode. Phys Rev X, 2016, 6: 031006

    Google Scholar 

  117. Gottesman D, Kitaev A, Preskill J. Encoding a qubit in an oscillator. Phys Rev A, 2001, 64: 012310

    Article  Google Scholar 

  118. Leghtas Z, Touzard S, Pop I M, et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science, 2015, 347: 853–857

    Article  Google Scholar 

  119. Wang C, Gao Y Y, Reinhold P, et al. A Schrödinger cat living in two boxes. Science, 2016, 352: 1087–1091

    Article  MathSciNet  MATH  Google Scholar 

  120. Ofek N, Petrenko A, Heeres R, et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 2016, 536: 441–445

    Article  Google Scholar 

  121. Hu L, Ma Y, Cai W, et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat Phys, 2019, 15: 503–508

    Article  Google Scholar 

  122. Rosenblum S, Reinhold P, Mirrahimi M, et al. Fault-tolerant detection of a quantum error. Science, 2018, 361: 266–270

    Article  MathSciNet  MATH  Google Scholar 

  123. Heeres R W, Reinhold P, Ofek N, et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat Commun, 2017, 8: 94

    Article  Google Scholar 

  124. Reinhold P, Rosenblum S, Ma W L, et al. Error-corrected gates on an encoded qubit. 2019. ArXiv: 1907.12327

  125. Gao Y Y, Lester B, Devoret M H, et al. Entangling bosonic modes via an engineered exchange interaction. 2018. ArXiv: 1806.07401

  126. Takita M, Cross A W, Cóorcoles A D, et al. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys Rev Lett, 2017, 119: 180501

    Article  Google Scholar 

  127. Harper R, Flammia S T. Fault-tolerant logical gates in the IBM quantum experience. Phys Rev Lett, 2019, 122: 080504

    Article  Google Scholar 

  128. Gong M, Yuan X, Wang S Y, et al. Experimental verification of five-qubit quantum error correction with superconducting qubits. 2019. ArXiv: 1907.04507

  129. Yan Z, Zhang Y R, Gong M, et al. Strongly correlated quantum walks with a 12-qubit superconducting processor. Science, 2019, 364: 753–756

    Article  Google Scholar 

  130. Zha C, Bastidas V M, Gong M, et al. Ergodic-localized junctions in a periodically-driven spin chain. 2020. ArXiv: 2001.09169

  131. Xu K, Chen J J, Zeng Y, et al. Emulating many-body localization with a superconducting quantum processor. Phys Rev Lett, 2018, 120: 050507

    Article  Google Scholar 

  132. Forn-Díaz P, Lisenfeld J, Marcos D, et al. Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys Rev Lett, 2010, 105: 237001

    Article  Google Scholar 

  133. Yoshihara F, Fuse T, Ashhab S, et al. Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat Phys, 2017, 13: 44–47

    Article  Google Scholar 

  134. Braumuöller J, Marthaler M, Schneider A, et al. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime. Nat Commun, 2017, 8: 779

    Article  Google Scholar 

  135. Romero G, Ballester D, Wang Y M, et al. Ultrafast quantum gates in circuit QED. Phys Rev Lett, 2012, 108: 120501

    Article  Google Scholar 

  136. Abrams D S, Lloyd S. Simulation of many-body fermi systems on a universal quantum computer. Phys Rev Lett, 1997, 79: 2586–2589

    Article  Google Scholar 

  137. Aspuru-Guzik A, Dutoi A D, Love P J. Simulated quantum computation of molecular energies. Science, 2005, 309: 1704–1707

    Article  Google Scholar 

  138. Whitfield J D, Biamonte J, Aspuru-Guzik A. Simulation of electronic structure Hamiltonians using quantum computers. Mol Phys, 2011, 109: 735–750

    Article  Google Scholar 

  139. Langford N K, Sagastizabal R, Kounalakis M. Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling. Nat Commun, 2017, 23: 1715

    Article  Google Scholar 

  140. Salathé Y, Mondal M, Oppliger M, et al. Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys Rev X, 2015, 5: 021027

    Google Scholar 

  141. Heras U L, Mezzacapo A, Lamata L, et al. Digital quantum simulation of spin systems in superconducting circuits. Phys Rev Lett, 2014, 112: 200501

    Article  Google Scholar 

  142. Barends R, Shabani A, Lamata L, et al. Digitized adiabatic quantum computing with a superconducting circuit. Nature, 2016, 534: 222–226

    Article  Google Scholar 

  143. Barends R, Lamata L, Kelly J, et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nat Commun, 2015, 6: 7654

    Article  Google Scholar 

  144. Omalley P J J, Babbush R, Kivlichan I D, et al. Scalable quantum simulation of molecular energies. Phys Rev X, 2016, 6: 031007

    Google Scholar 

  145. Las Heras U, García-Álvarez L, Mezzacapo A, et al. Fermionic models with superconducting circuits. EPJ Quantum Technol, 2015, 2: 8

    Article  Google Scholar 

  146. Wilczek F. Quantum mechanics of fractional-spin particles. Phys Rev Lett, 1982, 49: 957–959

    Article  MathSciNet  Google Scholar 

  147. Zhong Y P, Xu D, Wang P, et al. Emulating anyonic fractional statistical behavior in a superconducting quantum circuit. Phys Rev Lett, 2016, 117: 110501

    Article  Google Scholar 

  148. Song C, Xu D, Zhang P, et al. Demonstration of topological robustness of anyonic braiding statistics with a superconducting quantum circuit. Phys Rev Lett, 2018, 121: 030502

    Article  Google Scholar 

  149. Liu C, Huang H L, Chen C, et al. Demonstration of topologically path-independent anyonic braiding in a nine-qubit planar code. Optica, 2019, 6: 264–268

    Article  Google Scholar 

  150. Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev, 1999, 41: 303–332

    Article  MathSciNet  MATH  Google Scholar 

  151. Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations. Phys Rev Lett, 2009, 103: 150502

    Article  MathSciNet  Google Scholar 

  152. Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys Rev Lett, 2014, 113: 130503

    Article  Google Scholar 

  153. Rebentrost P, Bromley T R, Weedbrook C, et al. Quantum Hopfield neural network. Phys Rev A, 2018, 98: 042308

    Article  Google Scholar 

  154. Wiebe N, Braun D, Lloyd S. Quantum algorithm for data fitting. Phys Rev Lett, 2012, 109: 050505

    Article  Google Scholar 

  155. Zheng Y, Song C, Chen M C, et al. Solving systems of linear equations with a superconducting quantum processor. Phys Rev Lett, 2017, 118: 210504

    Article  Google Scholar 

  156. Huang H L, Zhao Y W, Li T, et al. Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front Phys, 2017, 12: 120305

    Article  Google Scholar 

  157. Peruzzo A, McClean J, Shadbolt P, et al. A variational eigenvalue solver on a quantum processor. 2013. ArXiv: 1304.3061

  158. McClean J R, Romero J, Babbush R, et al. The theory of variational hybrid quantum-classical algorithms. New J Phys, 2016, 18: 023023

    Article  MATH  Google Scholar 

  159. Benedetti M, Lloyd E, Sack S, et al. Parameterized quantum circuits as machine learning models. Quantum Sci Technol, 2019, 4: 043001

    Article  Google Scholar 

  160. Liu J H, Lim K H, Wood K L, et al. Hybrid quantum-classical convolutional neural networks. 2019. ArXiv: 1911.02998

  161. Lloyd S, Weedbrook C. Quantum generative adversarial learning. Phys Rev Lett, 2018, 121: 040502

    Article  MathSciNet  Google Scholar 

  162. Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces. Phys Rev Lett, 2019, 122: 040504

    Article  Google Scholar 

  163. Colless J I, Ramasesh V V, Dahlen D, et al. Robust determination of molecular spectra on a quantum processor. 2017. ArXiv: 1707.06408

  164. Kandala A, Mezzacapo A, Temme K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549: 242–246

    Article  Google Scholar 

  165. Chen M-C, Gong M, Xu X-S, et al. Demonstration of adiabatic variational quantum computing with a superconducting quantum coprocessor. 2019. ArXiv: 1905.03150

  166. Havócek V, Córcoles A D, Temme K, et al. Supervised learning with quantum-enhanced feature spaces. Nature, 2019, 567: 209–212

    Article  Google Scholar 

  167. Zoufal C, Lucchi A, Woerner S. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf, 2019, 5: 103

    Article  Google Scholar 

  168. Zhu D, Linke N M, Benedetti M, et al. Training of quantum circuits on a hybrid quantum computer. Sci Adv, 2019, 5: eaaw9918

    Article  Google Scholar 

  169. Hu L, Wu S H, Cai W, et al. Quantum generative adversarial learning in a superconducting quantum circuit. Sci Adv, 2019, 5: eaav2761

    Article  Google Scholar 

  170. Harrow A W, Montanaro A. Quantum computational supremacy. Nature, 2017, 549: 203–209

    Article  Google Scholar 

  171. Neill C, Roushan P, Kechedzhi K, et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 2018, 360: 195–199

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2017YFA0304300), National Natural Science Foundation of China (Grant No. 11574380), Chinese Academy of Science and its Strategic Priority Research Program (Grant No. XDB28000000), Science and Technology Committee of Shanghai Municipality, and Anhui Initiative in Quantum Information Technologies. He-Liang HUANG acknowledges support from the Open Research Fund from State Key Laboratory of High Performance Computing of China (Grant No. 201901-01), National Natural Science Foundation of China (Grant No. 11905294), and China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-Liang Huang or Xiaobo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HL., Wu, D., Fan, D. et al. Superconducting quantum computing: a review. Sci. China Inf. Sci. 63, 180501 (2020). https://doi.org/10.1007/s11432-020-2881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2881-9

Keywords

Navigation