Skip to main content
Log in

Universal Solutions of Nonlinear Dislocation Theory for Elastic Cylinder

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

For an elastic isotropic incompressible material of general form, a number of exact solutions have been found about large torsional and tensile–compressive deformations of a solid circular cylinder, taking into account distributed dislocations. Explicit formulas are obtained that determine the effect of dislocations on the dependences of the torque and longitudinal force on the twist angle and axial elongation. The main results are formulated in a form that allows experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. D. Clayton, Nonlinear Mechanics of Crystals (Springer, Dordrecht, 2011).

    Book  Google Scholar 

  2. R. A. Arutyunyan, “High-temperature creep and long-term strength of metallic materials,” Mech. Solids 53, 685–690 (2018).

    Article  ADS  Google Scholar 

  3. O. V. Dudko and V. E. Ragozina, “Dynamics of unloading and elastic waves in a medium with accumulated plastic pre-deformations,” Mech. Solids 54, 523–532 (2019).

    Article  ADS  Google Scholar 

  4. M. Y. Gutkin and I. A Ovid’ko, Plastic Deformation in Nanocrystalline Materials (Springer, Berlin, 2004).

    Book  Google Scholar 

  5. L. M. Zubov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies (Springer, Berlin, 1997).

    MATH  Google Scholar 

  6. I. I. Vorovich, Nonlinear Theory of Shallow Shells (Springer, New York, 1999).

    MATH  Google Scholar 

  7. K. Kondo, “On the geometrical and physical foundations in the theory of yielding,” in Proc. 2nd Jap. Nat. Congress of Appl. Mechanics (Tokyo, 1952), pp. 41–47.

  8. B. A. Bilby, R. Bullough, and E. Smith, “Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry,” Proc. Roy. Soc. London A 231, 263–273 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Kröner, “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen,” Arch. Ration. Mech. Anal. 4, 273–334 (1960).

    Article  MathSciNet  Google Scholar 

  10. A. A. Zelenina and L. M. Zubov, “Bending and twisting of nonlinear elastic bodies with continuously distributed dislocations,” Vestn. Yuzhn. Nauchn. Tsentr. RAN 5 (4), 15-22 (2009).

    Google Scholar 

  11. A. Yavary and A. Goriely, “Riemann–Cartan geometry of nonlinear dislocation mechanics,” Arch. Ration. Mech. Anal. 205, 59-118 (2012).

    Article  MathSciNet  Google Scholar 

  12. A. A. Zelenina and L. M. Zubov, “Nonlinear effects during the tension, bend, and torsion of elastic bodies with distributed dislocations,” Dokl. Phys. 58 (8), 354–357 (2013).

    Article  ADS  Google Scholar 

  13. L. M. Zubov, “Spherically symmetric solutions in the nonlinear theory of dislocations,” Dokl. Phys. 59 (9), 419–422 (2014).

    Article  Google Scholar 

  14. E. V. Goloveshkina and L. M. Zubov, “Universal spherically symmetric solution of nonlinear dislocation theory for incompressible isotropic elastic medium,” Arch. Appl. Mech. 89 (3), 409–424 (2019).

    Article  ADS  Google Scholar 

  15. J. F. Nye, “Some geometrical relations in dislocated crystals,” Acta Metall. 1 (2), 153–162 (1953).

    Article  Google Scholar 

  16. J. D. Eshelby, The Continuum Theory of Dislocations (Inostr. Lit., Moscow, 1963) [in Russian].

  17. L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 7: Theory of Elasticity (Pergamon, Oxford, 1975).

  18. A. A. Vakulenko, “Relation between Micro- and Macroproperties in Elastoplastic Media,” in Advances in Science and Technology: Mechanics of Solids, Vol. 22 (VINITI, Moscow, 1991), pp. 3–54 [in Russian].

    Google Scholar 

  19. A. I. Lurie, Nonlinear Theory of Elasticity (North-Holland, Amsterdam, 1990).

    MATH  Google Scholar 

  20. S. V. Derezin and L. M. Zubov, “Disclinations in nonlinear elasticity,” ZAMM 91, 433–442 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. A. Galasko and L. M. Zubov, “Nonlinear theory of torsion of elastic cylinder with a screw dislocation,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 4, 35–43 (2015).

    Google Scholar 

  22. L.M. Zubov, “Direct and inverse Poynting effects in elastic cylinders,” Dokl. Phys. 46, 675–677 (2001).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-11-00069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Zubov.

Additional information

Translated by I. K. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubov, L.M. Universal Solutions of Nonlinear Dislocation Theory for Elastic Cylinder. Mech. Solids 55, 701–709 (2020). https://doi.org/10.3103/S0025654420050167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420050167

Keywords:

Navigation