Skip to main content
Log in

Universal spherically symmetric solution of nonlinear dislocation theory for incompressible isotropic elastic medium

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The equilibrium problem of a nonlinearly elastic medium with a given dislocation distribution is considered. The system of equations consists of the equilibrium equations for the stresses, the incompatibility equations for the distortion tensor, and the constitutive equations. Deformations are considered to be finite. For a special distribution of screw and edge dislocations, an exact spherically symmetric solution of these equations is found. This solution is universal in the class of isotropic incompressible elastic bodies. With the help of the obtained solution, the eigenstresses in a solid elastic sphere and in an infinite space with a spherical cavity are determined. The interaction of dislocations with an external hydrostatic load was also investigated. We have found the dislocation distribution that causes the spherically symmetric quasi-solid state of an elastic body, which is characterized by zero stresses and a nonuniform elementary volumes rotation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Berdichevsky, V.L., Sedov, L.I.: Dynamic theory of continuously distributed dislocations. its relation to plasticity theory. Prikl. Mat. Mekh. 31(6), 989–1006 (1967)

    Google Scholar 

  2. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. A231, 263–273 (1955)

    MathSciNet  Google Scholar 

  3. Clayton, J.D.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  4. Clayton, J.D., McDowell, D.L., Bammann, D.J.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22(2), 210–256 (2006)

    Article  MATH  Google Scholar 

  5. Derezin, S.V., Zubov, L.M.: Disclinations in nonlinear elasticity. Ztsch. Angew. Math. und Mech. 91, 433–442 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dorfmann, A., Ogden, R.W., Saccomandi, G.: Universal relations for non-linear magnetoelastic solids. Int. J. Non-Linear Mech. 39(10), 1699–1708 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eremeyev, V., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  8. Ericksen, J.L.: Deformations possible in every isotropic, incompressible, perfectly elastic body. Z. Angew. Math. Physik ZAMP 5(6), 466–489 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eshelby, J.D.: The continuum theory of lattice defects. In: Seitz, D.T.F. (ed.) Solid State Physics, vol. 3, pp. 79–144. Academic, New York (1956)

    Google Scholar 

  10. Gutkin, M.Y., Ovid’ko, I.A.: Plastic Deformation in Nanocrystalline Materials. Springer, Berlin (2004)

    Book  Google Scholar 

  11. Klingbeil, W.W., Shield, R.T.: On a class of solutions in plane finite elasticity. Z. Angew. Math. Physik ZAMP 17(4), 489–511 (1966)

    Article  Google Scholar 

  12. Kondo, K.: On the geometrical and physical foundations in the theory of yielding. In: Proceedings of 2nd Japan National Congress for Applied Mechanics, Tokyo, pp. 41–47 (1952)

  13. Koster, M., Le, K., Nguyen, B.: Formation of grain boundaries in ductile single crystals at finite plastic deformations. Int. J. Plast. 69, 134–151 (2015)

    Article  Google Scholar 

  14. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  15. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, Theoretical Physics, vol. 7. Pergamon, Oxford (1975)

    Google Scholar 

  16. Le, K., Stumpf, H.: A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plast. 12(5), 611–627 (1996)

    Article  MATH  Google Scholar 

  17. Le, K.C., Günther, C.: Nonlinear continuum dislocation theory revisited. Int. J. Plast. 53, 164–178 (2014)

    Article  Google Scholar 

  18. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  19. Lurie, K.A.: The problem of effective parameters of a mixture of two isotropic dielectrics distributed in space-time and the conservation law for wave impedance in one-dimensional wave propagation. Proc. R. Soc. A Math. Phys. Eng. Sci. A454, 1767–1779 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lurie, K.A.: An introduction to the mathematical theory of dynamic materials. In: Gao, D.Y., Ogden, R.W. (eds.) Advances in Mechanics and Mathematics, vol. 15. Springer, New York (2007)

    Google Scholar 

  21. Maugin, G.A.: Defects, dislocations and the general theory of material inhomogeneity. In: Sansour, C., Skatulla, S. (eds.) Generalized Continua and Dislocation Theory. CISM courses and lectures, vol. 537, pp. 1–83. Springer, Vienna (2012)

    Google Scholar 

  22. Maugin, G.A.: Continuum Mechanics Through the Twentieth Century. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  23. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)

    Article  Google Scholar 

  24. Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  25. Pucci, E., Saccomandi, G.: Universal motions for constrained simple materials. Int. J. Non Linear Mech. 34(3), 469–484 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rivlin, R.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 241(835), 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rivlin, R.: Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 195(1043), 463–473 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rivlin, R.: Large elastic deformations of isotropic materials VI Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 242(845), 173–195 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saccomandi, G.: Universal results in finite elasticity. Non-linear elasticity: theory and applications. Lond. Math. Soc. Lecture Note Ser. 283, 97–134 (2001)

    MATH  Google Scholar 

  30. Saccomandi, G., Beatty, M.F.: Universal relations for fiber-reinforced elastic materials. Math. Mech. Solids 7(1), 95–110 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic, New York (1977)

    MATH  Google Scholar 

  32. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. 3, pp. 1–602. Springer, Berlin (1965)

    Google Scholar 

  33. Yavary, A., Goriely, A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205, 59–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zelenina, A.A., Zubov, L.M.: Bending and twisting of nonlinear elastic bodies with continuously distributed dislocations. Vestn. Yuzhn. Nauchn. Tsentr. RAN 3(4), 15–22 (2009)

    Google Scholar 

  35. Zelenina, A.A., Zubov, L.M.: Nonlinear effects during the tension, bend, and torsion of elastic bodies with distributed dislocations. Dokl. Phys. 58(8), 354–357 (2013)

    Article  Google Scholar 

  36. Zelenina, A.A., Zubov, L.M.: Quasi-solid states of micropolar elastic bodies. Dokl. Phys. 62(1), 30–33 (2017)

    Article  Google Scholar 

  37. Zhbanova, E.V., Zubov, L.M.: The influence of distributed dislocations on large deformations of an elastic sphere. In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, Advanced Structured Materials, vol. 60, pp. 61–76. Springer, Singapore (2016)

    Chapter  Google Scholar 

  38. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    MATH  Google Scholar 

  39. Zubov, L.M.: Spherically symmetric solutions in the nonlinear theory of dislocations. Dokl. Phys. 59(9), 419–422 (2014)

    Article  Google Scholar 

  40. Zubov, L.M.: Universal deformations of micropolar isotropic elastic solids. Math. Mech. Solids 21(2), 152–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zubov, L.M., Rudev, A.N.: Unconditional explicit formula for the roots of third and fourth degree algebraic equations. Izv. Vuzov. Sev.-Kavk. Region. Yestestv. Nauki (Special Issue), Nonlinear Problems of the Mechanics of Continuous Media, pp. 223–226 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya V. Goloveshkina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goloveshkina, E.V., Zubov, L.M. Universal spherically symmetric solution of nonlinear dislocation theory for incompressible isotropic elastic medium. Arch Appl Mech 89, 409–424 (2019). https://doi.org/10.1007/s00419-018-1403-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1403-9

Keywords

Navigation