Skip to main content
Log in

Accumulation of stilbene compounds and induction of related gene expression by hairy vetch and ryegrass extracts in grape berries

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The present study investigated the accumulation of stilbene compounds (trans- and cis-resveratrol, piceides, and piceatannol) and induction of gene expression related to their synthesis in the berries of ‘Campbell Early’ and ‘Kyoho’ grapes following treatment with water-based shoot extracts from hairy vetch and ryegrass. Trans-resveratrol was present in substantial amounts (4.1 ± 0.0 to 5.3 ± 0.07 μg/g fresh weight) in ‘Campbell Early’ and (7.6 ± 1.24 to 10.4 ± 0.35 07 μg/g fresh weight) in ‘Kyoho’, whereas trace amounts of cis-resveratrol were detected in treated grape berries. Moreover, the concentration of piceid and piceatannol in berries of both cultivars was markedly enhanced in response to treatment with plant extracts. Accumulation of stilbene compounds in berries increased at 24 h after treatment with the test extracts. Moreover, berries treated with extracts showed increased transcript levels of genes encoding enzymes involved in stilbene compound biosynthesis. Changes in the content of stilbene compounds were correlated with levels of stilbene synthase mRNA, indicating transcriptional control of stilbene synthase activity. Additionally, pre-treatment with the tested extracts resulted in reduced lesion size in berries inoculated with Botrytis cinerea. These results suggest that hairy vetch/ryegrass extracts can be used to elicit resistance responses against pathogen infection in grape berries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHS:

chalcone synthase

DMRT:

Duncan’s multiple range test

FW:

fresh weight

PAL:

phenyl alanine ammonia-lyase

RT:

reverse transcription

STS:

stilbene synthase

References

  • Adrian M., Jeandet P., Veneau J., Weston L.A. & Bessis R. 1997. Biological activity of resveratrol, a stilbenic compound from grapevines against Botrytis cinerea, the causal agent for gray mold. J. Chem. Ecol. 23: 1689–1702.

    Article  CAS  Google Scholar 

  • Bavaresco L.C. & Fregoni F. 2001. Physiological role and molecular aspects of grapevine stilbene compounds, pp. 153–182. In: Roubelakis-Angellakis K.A. (ed.): Molecular Biology and Biotechnology of the Grapevine. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Bavaresco L., Petegolli D., Cantu E., Fregni M., Chiusa G. & Trevisan M. 1997. Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. Vitis 36: 77–83.

    CAS  Google Scholar 

  • Belhadj A., Telef N., Cluzet S., Bouscaut J., Corio-Costet M.F. & Merillon J.M. 2008. Ethephon elicits protection against Erysiphe necator in grapevine. J. Agric. Food Chem. 56: 5781–5787.

    Article  CAS  PubMed  Google Scholar 

  • Borie B., Jeandet P., Parize A., Bessis R. & Adrian M. 2004. Resveratrol and stilbene synthase mRNA production in grapevine leaves treated with biotic and abiotic phytoalexin elicitors. Am. J. Enol. Vitic. 55: 60–64.

    CAS  Google Scholar 

  • Bruno G. & Sparapano L. 2006. Effects of three esca-associated fungi on Vitis vinifera L. III. Enzymes produced by the pathogens and their role in fungus-to-plant or in fungus-to fungus interactions. Physiol. Mol. Plant Pathol. 69: 182–94.

    Article  CAS  Google Scholar 

  • Chang S., Puryear J. & Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. 11: 113–116.

    Article  CAS  Google Scholar 

  • Choi S.J. 2011. The identification of stilbene compounds and the change of their contents in UV-irradiated grapevine leave. Kor. J. Hort. Sci. Technol. 29: 374–381.

    CAS  Google Scholar 

  • Chong J., Poutaraud A. & Hugueney P. 2009. Metabolism and roles of stilbenes in plants. Plant Sci. 177: 143–155.

    Article  CAS  Google Scholar 

  • Chung L.M., Park M.R., Chun J.C. & Yun S.J. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci. 164: 103–109.

    Article  CAS  Google Scholar 

  • Dercks W. & Creasy L.L. 1989. Influence of fosetyl-Al on phytoalexins accumulation in the Plasmopara viticolas grapevine interaction. Physiol. Mol. Plant Pathol. 34: 203–213.

    Article  CAS  Google Scholar 

  • Eckermann C., Schroder G., Eckermann S., Strack D., Schmidt J. & Schneider B. 2003. Stilbene carboxylate biosynthesis: a new function in the family of chalcone synthase-related proteins. Phytochemisty 62: 271–286.

    Article  CAS  Google Scholar 

  • Fornara V., Onelli E., Sparvoli F., Rossoni M., Aina R. & Marino G. 2008. Localization of stilbene synthase in Vitis vinifera L. during berry development. Protoplasma 233: 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Fritzemeier K.H. & Kindl H. 1981. Coordinate induction by UV light of stilbene synthase phenylalanine ammonialyase and cinnamate 4-hydroxylyase in leaves of Vitaceae. Planta 151: 48–52.

    Article  CAS  PubMed  Google Scholar 

  • Gatto P., Vrhovsek U., Muth J., Segala C., Romualdi C. & Fontana P. 2008. Ripening and genotype control stilbene accumulation in healthy grapes. J. Agric. Food Chem. 56: 11773–11785.

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R.F., Puertas B., Fernández M.I., Palma M. & Cantos-Villar E. 2010. Induction of stilbenes in grapes by UV-C: comparison of different subspecies of Vitis. Innov. Food Sci. Emerging Technol. 11: 231–238.

    Article  CAS  Google Scholar 

  • Hanawa F., Tahara S. & Mizutani J. 1992. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 31: 3005–3007.

    Article  CAS  Google Scholar 

  • Hoffman M.L., Regnier E.E. & Cardina J. 1993. Weed and corn (Zea mays) responses to a hairy vetch (Vicia villosa) cover crop. Weed Technol. 7: 594–599.

    Google Scholar 

  • Islam M.T., Ahn S.Y., Jo S.M. & Yun H.K. 2013. Isolation of antibacterial compounds from hairy vetch (Vicia villosa) against grapevine crown gall pathogen. Hort. Environ. Biotechnol. 54: 338–345.

    Article  CAS  Google Scholar 

  • Islam M.T., Ahn S.Y., Islam M.Z., Kim S.A. & Yun H.K. 2014. In vivo antibacterial activity against Rhizobium vitis and the induction of defense-related genes in grapevines (Vitis spp.) by hairy vetch and ryegrass extracts. Plant Omics J. 7: 133–141.

    Google Scholar 

  • Islam M.T., Ahn S.Y., Vajpai V.K. & Yun H.K. 2012. In vitro studies on the antimicrobial activities and chemical characterization of six cover crops against grapevine crown gall pathogen. J. Plant Pathol. 94: 591–599.

    Google Scholar 

  • Jang H.I., Lee S.B., Kim K.H., Choi Y.M. & Kim K.Y. 1995. Studies on ecology of grape grey moldby Botrytis cinerea. Agricultural Science Report, RDA 37: 307–313.

    Google Scholar 

  • Jimenez J.B., Orea J.M., Urena A.G., Escribano P., Lopez de la Osa P. & Guadarrama A. 2007. Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. Eur. Food Res. Technol. 224: 373–378.

    Article  CAS  Google Scholar 

  • Kim C.H. & Kwon S.I. 1993. Parasitic fitness of procymidone-resistant isolates of Botrytis cinerea on strawberry. Kor. J. Plant Pathol. 9: 26–30.

    Google Scholar 

  • Kindl H. 1985. Biosynthesis of stilbenes, pp. 349–377. In: Higuchi T. (ed.), Biosynthesis and Biodegradation of Wood Components. Academic Press, New York.

    Chapter  Google Scholar 

  • King R.E., Bomser J.A., & Min D.B. 2006. Bioactivity of resveratrol. Comprehensive Rev. Food Sci. Food Safety 5: 650–670.

    Article  Google Scholar 

  • Kita Y., Miura Y. & Yagasaki K. 2012. Antiproliferative and anti-invasive effect of piceatannol, a polyphenol present in grapes and wine, against hepatoma AH109A cells. J. Biomed. Biotechnol. 2012: 1–7.

    Article  Google Scholar 

  • Kwon J.Y., Seo S.G., Heo Y.S., Yue S., Cheng J.X., Lee K.W. & Kim K.H. 2012. Piceatannol, a natural polyphenolic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in the early phase of differentiation. J. Biol. Chem. 287: 11566–11578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langcake P. & Pryce R.J. 1977. The production of resveratrol and the viniferins by grapevine in response to ultraviolet irradiation. Phytochemisty 16: 1193–1196.

    Article  CAS  Google Scholar 

  • Lanz T., Schroder G. & Schroder J. 1990. Differential regulation of genes for resveratrol synthase in cell cultures of Arachis hypogaea L. Planta 181: 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Larkin R.P. & Griffin T.S. 2007. Control of soil born potato diseases using Brassica green manure. Crop Prot. 26: 1067–1077.

    Article  Google Scholar 

  • Mattivi F., Reniero F. & Korhammer S. 1995. Isolation, characterization, and evolution in red wine vinification of resveratrol monomers. J. Agric. Food Chem. 43: 1820–1823.

    Article  CAS  Google Scholar 

  • Melchior F. & Kindl H. 1990. Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett. 268: 17–20.

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 270: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Pan Q.H., Wang L. & Li J.M. 2009. Amounts and subcellular localization of stilbene synthase in response of grape berries to UV irradiation. Plant Sci. 176: 360–366.

    Article  CAS  Google Scholar 

  • Pearson R.C. & Goheen A.C. 1988. Compendium of Grape Disease. American Phytopathological Society Press, St. Paul, 121 pp.

    Google Scholar 

  • Pezet R. & pont V. 1988. Mise en evidence de pterostilbene dans les grappes de Vitis vinifera. Plant Physiol. Biochem. 26: 603–607.

    CAS  Google Scholar 

  • Piotrowska H., Kucinska M. & Murias M. 2012. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat. Res. 750: 60–82.

    Article  CAS  PubMed  Google Scholar 

  • Richter H., Pezet R., Viret O. & Gindro K. 2005. Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol. Mol. Plant Pathol. 67: 248–260.

    Article  CAS  Google Scholar 

  • Roggero J.P. & Garcia-Parrilla C. 1995. Effects of ultraviolet irradiation on resveratrol and changes in resveratrol and various its derivatives in the skins of ripening grapes. Sci. Aliments 15: 411–422.

    CAS  Google Scholar 

  • Rosemann D., Heller W. & Sandermann H. 1991. Plant responses to ozone. II. Induction of stilbene biosynthesis in scots pine (Pinus sylvestris L.) seedlings. Plant Physiol. 97: 1280–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sbaghi M., Eandet P.J., Faivre B., Bessis R. & Fournioux J.C. 1995. Development of methods using phytoalexin (resveratrol) assessment as a selection criterion to screen grapevine in vitro cultures for resistance to grey mould (Botrytis cinerea). Euphytica 86: 41–47.

    Article  Google Scholar 

  • Soleas G. J., Diamandis E. P. & Goldberg D. M. 1997. Resveratrol: a molecule whose time has come? And gone?. Clin. Biochem. 30: 91–113.

    Article  CAS  PubMed  Google Scholar 

  • Son P.S., Park S.A., Na H.K., Jue D.M., Kim S. & Surh Y.J. 2010. Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-kB activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKKb as a potential target. Carcinogenesis 31: 1442–1449.

    Article  CAS  PubMed  Google Scholar 

  • Sun B., Ribes A.M., Leandro M.C., Belchior A.P. & Spranger M.I. 2006. Stilbenes: quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal. Chem. Acta 563: 382–390.

    Article  CAS  Google Scholar 

  • Tropf S., Lanz T., Rensing S.A., Schroder J. & Schroder G. 1994. Evidence that stilbene synthase has developed from chalcone synthases several times in the course of evolution. J. Mol. Evol. 38: 610–618.

    Article  CAS  PubMed  Google Scholar 

  • Vrhovsek U., Wendelin S. & Eder R. 1997. Effects of various vinification techniques on the concentrations of cis- and trans-resveratrol and resveratrol glucoside isomers in wine. Am. J. Enol. Vitic. 48: 214–219.

    CAS  Google Scholar 

  • Waterhouse A.L. & Lamuela-Raventos R.M. 1994. The occurrence of piceid, a stilbene glucoside, in grape berries. Phytochemistry 37: 571–573.

    Article  CAS  Google Scholar 

  • Wu J., Zhang Y., Zang H., Hong H., Folta K.M. & Lu J. 2010. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol.10: 234.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Keun Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.T., Ahn, SY., Islam, M.Z. et al. Accumulation of stilbene compounds and induction of related gene expression by hairy vetch and ryegrass extracts in grape berries. Biologia 69, 1693–1700 (2014). https://doi.org/10.2478/s11756-014-0488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0488-z

Key words

Navigation