Skip to main content

Production and Biosynthesis of Bioactive Stilbenoids in Hairy Root Cultures

  • Chapter
  • First Online:
Production of Plant Derived Natural Compounds through Hairy Root Culture

Abstract

Stilbenoids are plant defense phenolic compounds that exhibit numerous biological activities with potential applications in human health. These compounds are present in non-taxonomically related plants species, such as grape and peanut. As many other defense compounds, most stilbenoids are either absent or accumulate in very low levels in non-stressed plants, thereby, highlighting the need to develop a sustainable system for their production. In order to address this issue, hairy root cultures of stilbenoid-producing species, including grapevine (Vitis vinifera), muscadine (V. rotundifolia), and peanut (Arachis hypogaea), have been established via infection of plant tissues with Agrobacterium rhizogenes. Several elicitation treatments have been explored in order to increase the levels of stilbenoids in these cultures. Among these treatments, the co-treatment with methyl jasmonate and methyl-β-cyclodextrin has been the most effective in providing sustainable and high levels of stilbenoids. Different types of stilbenoids have been identified in hairy roots of different plant species. For instance, prenylated stilbenoids are found in elicitor-treated peanut hairy root cultures but not in hairy root cultures of muscadine or grapevine. In addition to providing a platform for stilbenoid production, hairy roots are also being explored to study the biosynthesis of these bioactive compounds. The present chapter provides the status of production and biosynthesis of stilbenoids in grapevine, muscadine, and peanut hairy root cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott JA, Medina-Bolivar F, Martin EM, Engelberth AS, Villagarcia H, Clausen EC, Carrier DJ (2010) Purification of resveratrol, arachidin-1, and arachidin-3 from hairy root cultures of peanut (Arachis hypogaea) and determination of their antioxidant activity and cytotoxicity. Biotechnol Prog 26:1344–1351

    Article  CAS  PubMed  Google Scholar 

  • Aguamah GE, Langcake P, Leworthy DP, Page JA, Pryce RJ, Strange RN (1981) Two novel stilbene phytoalexins from Arachis hypogaea. Phytochemistry 20:1381–1383

    Article  CAS  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Aisyah S, Gruppen H, Slager M, Helmink B, Vincken J-P (2015) Modification of prenylated stilbenoids in peanut (Arachis hypogaea) seedlings by the same fungi that elicited them: The fungus strikes back. J Agric Food Chem 63:9260–9268

    Article  CAS  PubMed  Google Scholar 

  • Ball JM, Medina-Bolivar F, Defrates K, Hambleton E, Hurlburt ME, Fang L, Yang T, Nopo-olazabal L, Atwill RL, Ghai P, Parr RD (2015) Investigation of stilbenoids as potential therapeutic agents for Rotavirus gastroenteritis. Adv Virol. https://doi.org/10.1155/2015/293524

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  • Belchí-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreño MA (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31:81–89

    Article  PubMed  Google Scholar 

  • Bontpart T, Marlin T, Vialet S, Guiraud J-L, Pinasseau L, Meudec E, Sommerer N, Cheynier V, Terrier N (2016) Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine. J Exp Bot 67:3537–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonlaksiri C, Oonanant W, Kongsaeree P, Kittakoop P, Tanticharoen M, Thebtaranonth Y (2000) An antimalarial stilbene from Artocarpus integer. Phytochemistry 54:415–417

    Article  CAS  PubMed  Google Scholar 

  • Brents LK, Medina-Bolivar F, Seely KA, Nair V, Bratton SM, Ñopo-Olazabal L, Patel RY, Liu H, Doerksen RJ, Prather PL et al (2012) Natural prenylated resveratrol analogs arachidin-1 and -3 demonstrate improved glucuronidation profiles and have affinity for cannabinoid receptors. Xenobiotica 42:139–156

    Article  CAS  PubMed  Google Scholar 

  • Bru R, Sellés S, Casado-Vela J, Belchí-Navarro S, Pedreño MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65–71

    Article  CAS  PubMed  Google Scholar 

  • Chang J-C, Lai Y-H, Djoko B, Wu P-L, Liu C-D, Liu Y-W, Chiou RY-Y (2006) Biosynthesis enhancement and antioxidant and anti-inflammatory activities of peanut (Arachis hypogaea L.) arachidin-1, arachidin-3, and isopentadienylresveratrol. J Agric Food Chem 54:10281–10287

    Article  CAS  PubMed  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    Article  CAS  Google Scholar 

  • Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS, Medina-Bolivar F (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol Biochem 48:310–318

    Article  CAS  PubMed  Google Scholar 

  • Cooksey C, Garratt P, Richards S (1988) A dienyl stilbene phytoalexin from Arachis hypogaea. Phytochemistry 27:1015–1016

    Article  Google Scholar 

  • Djoko B, Chiou RY-Y, Shee J-J, Liu Y-W (2007) Characterization of immunological activities of peanut stilbenoids, arachidin-1, piceatannol, and resveratrol on lipopolysaccharide-induced inflammation of RAW 264.7 macrophages. J Agric Food Chem 55:2376–2383

    Article  CAS  PubMed  Google Scholar 

  • Dunstan DI, Short KC (1977) Improved growth of tissue cultures of the onion, Allium cepa. Physiol Plant 41:70–72

    Article  Google Scholar 

  • Fiorentino A, D’Abrosca B, Pacifico S, Iacovino R, Mastellone C, Di Blasio B, Monaco P (2006) Distachyasin: a new antioxidant metabolite from the leaves of Carex distachya. Bioorganic Med Chem Lett 16:6096–6101

    Article  CAS  Google Scholar 

  • Flamini R, Mattivi F, De Rosso M, Arapitsas P, Bavaresco L (2013) Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 14:19651–19669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flombaum J, Santos L (2005) Rhesus monkeys attribute perceptions to others. Curr Biol 15:447–452

    Article  CAS  PubMed  Google Scholar 

  • Hakim EH, Ulinnuha UZ, Syah YM, Ghisalberti EL (2002) Artoindonesianins N and O, new prenylated stilbene and prenylated arylbenzofuran derivatives from Artocarpus gomezianus. Fitoterapia 73:597–603

    Article  CAS  PubMed  Google Scholar 

  • Hasan MM, Cha M, Bajpai VK, Baek K-H (2012) Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review. Rev Environ Sci Bio/Technol 12:1–13

    Google Scholar 

  • Hidalgo D, Martinez-Marquez A, Moyano E, Bru-Martinez R, Corchete P, Palazon J (2017) Bioconversion of stilbenes in genetically root and cell cultures of tobacco. Sci Rep. https://doi.org/10.1038/srep45331

  • Holl J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25:4135–4149

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang C-P, Au L-C, Chiou RY-Y, Chung P-C, Chen S-Y, Tang W-C, Chang C-L, Fang W-H, Lin S-B (2010) Arachidin-1, a peanut stilbenoid, induces programmed cell death in human leukemia HL-60 cells. J Agric Food Chem 58:12123–12129

    Article  CAS  PubMed  Google Scholar 

  • Ioset J-R, Marston A, Gupta MP, Hostettmann K (2001) Five new prenylated stilbenes from the root bark of Lonchocarpus chiricanus. J Nat Prod 64:710–715

    Article  CAS  PubMed  Google Scholar 

  • Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño M (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wu J, Huang D (2013) New stilbenoids isolated from fungus-challenged black skin peanut seeds and their adipogenesis inhibitory activity in 3T3-L1 cells. J Agric Food Chem 61:4155–4161

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22

    Article  PubMed  Google Scholar 

  • López-Nicolás JM, Núñez-Delicado E, Pérez-López AJ, Barrachina ÁC, Cuadra-Crespo P (2006) Determination of stoichiometric coefficients and apparent formation constants for β-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography. J Chromatogr A 1135:158–165

    Article  PubMed  Google Scholar 

  • Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51:5867–5870

    Article  CAS  PubMed  Google Scholar 

  • Matencio A, García-Carmona F, López-Nicolás JM (2016) Encapsulation of piceatannol, a naturally occurring hydroxylated analogue of resveratrol, by natural and modified cyclodextrins. Food Funct 7:2367–2373

    Article  CAS  PubMed  Google Scholar 

  • Medina-Bolivar F, Condori J, Rimando AM, Hubstenberger J, Shelton K, O’Keefe SF, Bennett S, Dolan MC (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992–2003

    Article  CAS  PubMed  Google Scholar 

  • Nopo-Olazabal C, Hubstenberger J, Nopo-Olazabal L, Medina-Bolivar F (2013) Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (Vitis rotundifolia michx.) J Agric Food Chem 61:11744–11758

    Article  CAS  PubMed  Google Scholar 

  • Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Medina-Bolivar F (2014) Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. Plant Physiol Biochem 74:50–69

    Article  CAS  PubMed  Google Scholar 

  • Potrebko I, Resurreccion AV (2009) Effect of ultraviolet doses in combined ultraviolet-ultrasound treatments on trans-resveratrol and trans-piceid contents in sliced peanut kernels. J Agric Food Chem 57:7750–7756

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Valdivia AC, van der Heijden R, Verpoorte R (1997) Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat Prod Rep 14:591–603

    Article  CAS  PubMed  Google Scholar 

  • Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in Vaccinium Berries. J Agric Food Chem 52:4713–4719

    Article  CAS  PubMed  Google Scholar 

  • Sales JM, Resurreccion AVA (2014) Resveratrol in peanuts. Crit Rev Food Sci Nutr 54:734–770

    Article  CAS  PubMed  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Shen T, Wang X-N, Lou H-X (2009) Natural stilbenes: an overview. Nat Prod Rep 26:916–935

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar G, Liu C, Towler MJ, Weathers PJ (2010) Biomass production of hairy roots of Artemisia annua and Arachis hypogaea in a scaled-up mist bioreactor. Biotechnol Bioeng 107:802–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumar G, Medina-Bolivar F, Lay JO Jr, Dolan MC, Condori J, Grubbs SK, Wright SM, Baque MA, Lee EJ, Paek KY (2011) Bioprocess and bioreactor: next generation technology for production of potential plant-based antidiabetic and antioxidant molecules. Curr Med Chem 18:79–90

    Article  CAS  PubMed  Google Scholar 

  • Sobolev VS (2008) Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species. J Agric Food Chem 56:1949–1954

    Article  CAS  PubMed  Google Scholar 

  • Sobolev VS (2013) Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms. J Agric Food Chem 61:1850–1858

    Article  CAS  PubMed  Google Scholar 

  • Sobolev VS, Potter TL, Horn BW (2006) Prenylated stilbenes from peanut root mucilage. Phytochem Anal 17:312–322

    Article  CAS  PubMed  Google Scholar 

  • Sobolev VS, Neff S, Gloer JB (2009) New stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus caelatus strain. J Agric Food Chem 57:62–68

    Article  CAS  PubMed  Google Scholar 

  • Sobolev VS, Neff S, Gloer JB (2010) New dimeric stilbenoids from fungal-challenged peanut (Arachis hypogaea) seeds. J Agric Food Chem 58:875–881

    Article  CAS  PubMed  Google Scholar 

  • Sobolev VS, Khan SI, Tabanca N, Wedge DE, Manly SP, Cutler SJ, Coy MR, Becnel JJ, Neff SA, Gloer JB (2011) Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids. J Agric Food Chem 59:1673–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobolev VS, Krausert NM, Gloer JB (2016) New monomeric stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus flavus strain. J Agric Food Chem 64:579–584

    Article  CAS  PubMed  Google Scholar 

  • Terrier N, Torregrosa L, Ageorges A, Vialet S, Verries C, Cheynier V, Romieu C (2008) Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol 149:1028–1041

    Article  PubMed  Google Scholar 

  • Tisserant L-P, Aziz A, Jullian N, Jeandet P, Clément C, Courot E, Boitel-Conti M (2016) Enhanced stilbene production and excretion in Vitis vinifera cv Pinot Noir hairy root cultures. Molecules 21:1703

    Article  Google Scholar 

  • Tomé-Carneiro J, Larrosa M, González-Sarrías A, Tomás-Barberán FA, García-Conesa MT, Espín JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093

    Article  PubMed  PubMed Central  Google Scholar 

  • Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38:610–618

    Article  CAS  PubMed  Google Scholar 

  • Van Der Kaaden JE, Hemscheidt TK, Mooberry SL (2001) Mappain, a new cytotoxic prenylated stilbene from Macaranga mappa. J Nat Prod 64:103–105

    Article  Google Scholar 

  • Vanetten HD, Sandrock RW, Wasmann CC, Soby SD, Mccluskey K, Wang P (1995) Detoxification of phytoanticipins and phytoalexins by phytopathogenic fungi. Can J Bot 73:518–525

    Article  Google Scholar 

  • Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N, Vescovi PP, Fogliano V, Marchelli R (2005) Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res 49:495–504

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Song L, Huang D (2011) Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants. J Agric Food Chem 59:5993–6003

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Fang L, Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Balmaceda C, Medina-Bolivar F (2015) Enhanced production of resveratrol, piceatannol, arachidin-1, and arachidin-3 in hairy root cultures of peanut co-treated with methyl jasmonate and cyclodextrin. J Agric Food Chem 63:3942–3950

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Fang L, Rimando AM, Sobolev V, Mockaitis K, Medina-Bolivar F (2016) A stilbenoid-specific prenyltransferase utilizes dimethylallyl pyrophosphate from the plastidic terpenoid pathway. Plant Physiol 171:2483–2498

    PubMed  PubMed Central  Google Scholar 

  • Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Yoder BJ, Cao S, Norris A, Miller JS, Ratovoson F, Razafitsalama J, Andriantsiferana R, Rasamison VE, Kingston DGI (2007) Antiproliferative prenylated stilbenes and flavonoids from Macaranga alnifolia from the Madagascar rainforest. J Nat Prod 70:342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the Medina-Bolivar laboratory focused on the production of stilbenoids in peanut has been supported by the United States Department of Agriculture-NIFA (Grant No. 2014-67014-21701) and the Arkansas Biosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Medina-Bolivar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, T., Fang, L., Medina-Bolivar, F. (2017). Production and Biosynthesis of Bioactive Stilbenoids in Hairy Root Cultures. In: Malik, S. (eds) Production of Plant Derived Natural Compounds through Hairy Root Culture . Springer, Cham. https://doi.org/10.1007/978-3-319-69769-7_3

Download citation

Publish with us

Policies and ethics