Skip to main content

Advertisement

Log in

Bio-physical investigation of calcium silicate biomaterials by green synthesis- osseous tissue regeneration

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

CaSiO3 wollastonite biomaterials were synthesized by hydrothermal approach in three different weight percentages of SiO2 and CaO (CA—25:75, CB—50:50, and CC—75:25) extracted from silica sand and limestone. In vitro biological testing revealed the materials bioactivity in SBF and their antibacterial efficacy against Streptococcus aureus and Escherichia coli. By direct contact with the L929 mouse fibroblast cell line, the cell viability against synthesized biomaterials was examined. These bio-properties were interlinked with the degradation rate of biomaterials in biofluid, which was observed under Tris–Hcl immersion. The regulated degradation of synthesized biomaterial simultaneously constrained the alkaline pH shift, which is beneficial for bioactivation and biocompatibility. It attained a compressive strength of 73 MPa without failure, which is equivalent to or higher than conventional bioglass and suitable for load-bearing sites. The synthesized biomaterials acquire excellent bioactivity, biocompatibility, and mechanical stability through controlled degradation versus bone apatite formation in a balanced manner, supported by porously fused structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data are associated with the written manuscript.

Abbreviations

SBF:

Simulated body fluid

Hap:

Hydroxyapatite

References

  1. I. Sheikh, Y. Dahman, Applications of nanobiomaterials in hard tissue engineering, in Biomaterials in hard tissue engineering. (Elsevier, Amsterdam, 2016), pp.33–62

    Chapter  Google Scholar 

  2. C. Ning, L. Zhou, G. Tan, Fourth-generation biomedical materials. Mater. Today 19(1), 2–3 (2016)

    Article  Google Scholar 

  3. M.S. de Almeida, G.V. de Oliveira Fernandes, A.M. Oliveira, J.M. Granjeiro, Calcium silicate as a graft material for bone fractures: a systematic review. J. Int. Med. Res. 46(7), 2537–2548 (2018)

    Article  Google Scholar 

  4. E. Papynov, O. Shichalin, I. Buravlev, A. Belov, A. Portnyagin, V. Mayorov, E. Merkulov, T. Kaidalova, Y. Skurikhina, V. Turkutyukov, A. Fedorets, V. Apanasevich, CaSiO3-HAp structural bioceramic by sol-gel and SPS-RS techniques: Bacteria test assessment. J. Funct. Biomater. 11(2), 41 (2020)

    Article  CAS  Google Scholar 

  5. K. Prasad, O. Bazaka, M. Chua, M. Rochford, L. Fedrick, J. Spoor, R. Symes, M. Tieppo, C. Collins, A. Cao, D. Markwell, K. Ostrikov, K. Bazaka, Metallic biomaterials: current challenges and opportunities. Materials 10(8), 884 (2017)

    Article  Google Scholar 

  6. S. Wang, L. Lu, C. Wang, C. Gao, X. Wang, Polymeric biomaterials for tissue engineering applications. Int. J. Polym. Sci. (2011). https://doi.org/10.1155/2011/184623

    Article  Google Scholar 

  7. S. Punj, J. Singh, K. Singh, Ceramic biomaterials: properties, state of the art and future prospective. Ceram. Int. 47(20), 28059–28074 (2021)

    Article  CAS  Google Scholar 

  8. J. Huang, S.M. Best, Ceramic biomaterials, in Tissue engineering using ceramics and polymers. (Elsevier, Amsterdam, 2007), pp.3–31

    Chapter  Google Scholar 

  9. S. Wei, J.X. Ma, L. Xu, X.S. Gu, X.L. Ma, Biodegradable materials for bone defect repair. Mil. Med. Res. (2020). https://doi.org/10.1186/s40779-020-00280-

    Article  Google Scholar 

  10. Z. Zhang, H. Shao, T. Lin, Y. Zhang, J. He, L. Wang, 3D gel printing of porous calcium silicate scaffold for bone tissue engineering. J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03626-1

    Article  Google Scholar 

  11. S. Palakurthy, K. Venu Gopal Reddy, R.K. Samudrala, P. Abdul Azeem, In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater. Sci. Eng.: C 98, 109–117 (2019)

    Article  CAS  Google Scholar 

  12. L.L. Hench, The story of bioglass. J. Mater. Sci.—Mater. Med. 17(11), 967–978 (2006)

    Article  CAS  Google Scholar 

  13. L.A. Adams, E.R. Essien, E.E. Kaufmann, A new route to sol-gel crystalline wollastonite bioceramic. J. Asian Ceram. Soc. 6(2), 132–138 (2018)

    Article  Google Scholar 

  14. E.J. Nassar et al., Biomaterials and sol-gel process: a methodology for the preparation of functional materials, in Biomaterials science and engineering. (IntechOpen, London, 2011)

    Google Scholar 

  15. Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal synthesis of nanomaterials. J. Nanomater. (2020). https://doi.org/10.1155/2020/8917013

    Article  Google Scholar 

  16. K. Lin, W. Zhai, S. Ni, J. Chang, Yi. Zeng, W. Qian, Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram. Int. 31(2), 323–326 (2005)

    Article  CAS  Google Scholar 

  17. M.A. de la Casa-Lillo, P. Velásquez, P.N. De Aza, Influence of thermal treatment on the “in vitro” bioactivity of wollastonite materials. J. Mater. Sci.: Mater. Med. 22(4), 907–915 (2011)

    Google Scholar 

  18. K. Lin, C. Lin, Yi. Zeng, High mechanical strength bioactive wollastonite bioceramics sintered from nanofibers. RSC Adv. 6(17), 13867–13872 (2016)

    Article  CAS  Google Scholar 

  19. P. Kumar, B.S. Dehiya, A. Sindhu, R. Kumar, C.I. Pruncu, A. Yadav, Fabrication and characterization of silver nanorods incorporated calcium silicate scaffold using polymeric sponge replica technique. Mater. Des. 195, 109026 (2020)

    Article  CAS  Google Scholar 

  20. Z. Du, H. Leng, L. Guo, Y. Huang, T. Zheng, Z. Zhao, X. Liu, X. Zhang, Q. Cai, X. Yang, Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Composites B 190, 107937 (2020)

    Article  CAS  Google Scholar 

  21. P. Srinath, P.A. Azeem, K.V. Reddy, V. Penugurti, B. Manavathi, Zirconia-containing wollastonite ceramics derived from bio waste resources for bone tissue engineering. Biomed. Mater. (2020). https://doi.org/10.1088/1748-605X/ab975d

    Article  Google Scholar 

  22. G.G. dos Santos, L.Q. Vasconcelos, I.C. Barreto, F.B. Miguel, R.P. de Araújo, Wollastonite and tricalcium phosphate composites for bone regeneration. Res. Soc. Dev. 11(9), e12011931662 (2022)

    Article  Google Scholar 

  23. K. Kazeli, I. Tsamesidis, A. Theocharidou, L. Malletzidou, J. Rhoades, G.K. Pouroutzidou, E. Likotrafiti, K. Chrissafis, T. Lialiaris, L. Papadopoulou, E. Kontonasaki, E. Lymperaki, Synthesis and characterization of novel calcium-silicate nanobioceramics with magnesium: effect of heat treatment on biological, physical and chemical properties. Ceramics 4, 628–651 (2021)

    Article  CAS  Google Scholar 

  24. R. Lakshmi, V. Velmurugan, S. Sasikumar, Preparation and phase evolution of wollastonite by sol-gel combustion method using sucrose as the fuel. Combust. Sci. Technol. 185(12), 1777–1785 (2013)

    Article  CAS  Google Scholar 

  25. P.N. Jagadale, S.R. Kulal, M.G. Joshi, P.P. Jagtap, S.M. Khetre, S.R. Bamane, Synthesis and characterization of nanostructured CaSiO3 biomaterial. Mater. Sci.- Pol. 31(2), 269–275 (2013)

    Article  CAS  Google Scholar 

  26. P. Barpanda, N. Recham, J.-N. Chotard, K. Djellab, W. Walker, M. Armand, J.-M. Tarascon, Structure and electrochemical properties of novel mixed Li(Fe1−x Mx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis. J. Mater. Chem. 20(9), 1659 (2010)

    Article  CAS  Google Scholar 

  27. K. Li, C. Hall, A. Hamilton, Effect of silica particle size on the formation of calcium silicate hydrate [C-S-H] using thermal analysis. Thermochim. Acta 672, 142–149 (2019)

    Article  Google Scholar 

  28. E. Tamjid, R. Bagheri, M. Vossoughi, A. Simchi, Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater. Sci. Eng. C 31(7), 1526–1533 (2011)

    Article  CAS  Google Scholar 

  29. G.B. Tomar, J.R. Dave, S.T. Mhaske, S. Mamidwar, P.K. Makar, Application of biomaterials in bone tissue engineering, in Functional bionanomaterials, biotechnology in the life science. (Springer, Cham, 2020), pp.209–250

    Chapter  Google Scholar 

  30. S.N. Ishmah, M.D. Permana, M.L. Firdaus, D.R. Eddy, Extraction of silica from Bengkulu beach sand using alkali fusion method. Pendipa J. Sci. Educ. 4(2), 1–5 (2020)

    Article  Google Scholar 

  31. M. Samari, F. Ridha, V. Manovic, A. Macchi, E.J. Anthony, Direct capture of carbon dioxide from air via lime-based sorbents. Mitig. Adapt. Strateg. Glob. Change 25, 25–41 (2019)

    Article  Google Scholar 

  32. A.C. Janini, G.F. Bombarda, L.E. Pelepenko, M.A. Marciano, Antimicrobial activity of calcium silicate-based dental materials: a literature review. Antibiotics 10(7), 865 (2021)

    Article  CAS  Google Scholar 

  33. G.C. Wang, Z.F. Lu, H. Zreiqat, Bioceramics for skeletal bone regeneration, in Bone substitute biomaterials. (Elsevier, Amsterdam, 2014), pp.180–216

    Chapter  Google Scholar 

  34. T. Yokoyama, Basic properties and measuring methods of nanoparticles, in Nanoparticle technology handbook. (Elsevier, Amsterdam, 2018), pp.3–47

    Google Scholar 

  35. R. Alias, The effects of sintering temperature variations on microstructure changes of LTCC substrate, in Sintering of ceramics—new emerging technique. (InTech, London, 2012)

    Google Scholar 

  36. E. Fiume, G. Magnaterra, A. Rahdar, E. Verne, F. Baino, HAp for biomedical applications: a short overview. Ceramics 4, 542–563 (2021)

    Article  CAS  Google Scholar 

  37. M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6(2), 71–79 (2016)

    Article  Google Scholar 

  38. I.M. Hamouda, Current perspectives of nanoparticles in medical and dental biomaterials. J. Biomed. Res. 26(3), 143 (2012)

    Article  CAS  Google Scholar 

  39. S. Ramesh, C.Y. Tan, M. Hamdi, I. Sopyan, W.D. Teng, The influence of Ca/P ratio on the properties of HAp bioceramics, in International conference on smart materials and biotechnology in engineering. (2007)

  40. A. Samanta, S. Podder, C.K. Ghosh, M. Bhattacharya, J. Ghosh, A.K. Mallik, A. Dey, A.K. Mukhopadhyay, ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide. J. Mech. Behav. Biomed. Mater. 72, 110–128 (2017)

    Article  CAS  Google Scholar 

  41. N. Abbasi, S. Hamlet, R.M. Love, N.-T. Nguyen, Porous scaffolds for bone regeneration. J. Sci.: Adv. Mater. Devices (2020). https://doi.org/10.1016/j.jsamd.2020.01.007

    Article  Google Scholar 

  42. C.R.E. Bueno, D. Valentim, V.A.S. Marques, J.E. Gomes-Filho, L.T.A. Cintra, R.C. Jacinto, E. Dezan-Junior, Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers. Braz. Oral Res. (2016). https://doi.org/10.1590/1807-3107BOR-2016.vol30.0081

    Article  Google Scholar 

  43. A. Neumann, T. Reske, M. Held, K. Jahnke, C. Ragob, H.R. Maier, Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro. J. Mater. Sci.—Mater. Med. 15(10), 1135–1140 (2004)

    Article  CAS  Google Scholar 

  44. X. Gai, C. Liu, G. Wang, Y. Qin, C. Fan, J. Liu, Y. Shi, A novel method for evaluating the dynamic biocompatibility of degradable biomaterials based on real-time cell analysis. Regener. Biomater. 7(3), 321–329 (2020)

    Article  CAS  Google Scholar 

  45. M.S. Kairon Mubina, S. Shailajha, R. Sankaranarayanan, M. Iyyadurai, Bone formation with high bacterial inhibition and low toxicity behavior by melding of Al2O3 on nanobioactive glass ceramics via sol-gel process. J. Sol-Gel Sci. Technol. (2022). https://doi.org/10.1007/s10971-022-05842-9

    Article  Google Scholar 

  46. H. Sheng, N. Congqin, Z. Yue, C. Lei, L. Kaili, C. Jiang, Antibacterial activity of silicate bioceramics. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 26(2), 226–230 (2011)

    Article  Google Scholar 

  47. J. Jeong, J.H. Kim, J.H. Shim, N.S. Hwang, C.Y. Heo, Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. (2019). https://doi.org/10.1186/s40824-018-0149-3

    Article  Google Scholar 

  48. L. Fedunik-Hofman, A. De La Calle, S.W. Donne, Comparative kinetic analysis of CaCO3/CaO reaction system for energy storage and carbon capture. Appl. Sci. 9(21), 4601 (2019). https://doi.org/10.3390/app9214601

    Article  CAS  Google Scholar 

  49. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907–2915 (2006)

    Article  CAS  Google Scholar 

  50. D. Tadic, F. Peters, M. Epple, Continuous synthesis of amorphous carbonated apatites. Biomaterials 23(12), 2553–2559 (2002)

    Article  CAS  Google Scholar 

  51. S. Palakurthy, P.A. Azeem, K. Venugopal Reddy, V. Penugurti, B. Manavathi, A Comparative study on in vitro behaviour of calcium silicate ceramics synthesized from bio-waste resources. J. Am. Ceram. Soc. (2019). https://doi.org/10.1111/jace.16745

    Article  Google Scholar 

  52. N. Iwashita, X-ray powder diffraction, in Materials science and engineering of carbon. (Elsevier, Amsterdam, 2016), pp.7–25

    Google Scholar 

  53. W. Li, J. Zhou, Y.-Y. Xu, Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep. 3(5), 617–620 (2015). https://doi.org/10.3892/br.2015.481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to laboratory facility in Department of Physics, Manonmaniam Sundaranar Universiy, Tirunelveli, Tamilnadu and extend their sincere thanks to MNCF CeNSE, IISC, Bangalore for XRD, FESEM-EDS, and Micro UTM facilities. We are thankful to The South Indian Textile Research Association (SITRA) for cytotoxicity test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shailajha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthi Muthulakshmi, S., Shailajha, S. & Shanmugapriya, B. Bio-physical investigation of calcium silicate biomaterials by green synthesis- osseous tissue regeneration. Journal of Materials Research 38, 4369–4384 (2023). https://doi.org/10.1557/s43578-023-01149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01149-9

Keywords

Navigation