Skip to main content

Advertisement

Log in

Bone formation with high bacterial inhibition and low toxicity behavior by melding of Al2O3 on nanobioactive glass ceramics via sol-gel process

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bioactive glasses have been popular as coating materials on bone implants in recent years to increase their integration with the host tissue and overall biological function. Infection and toxicity are significant factors in the failure of bone-implant material. The goal of this research is to develop a sol-gel derived, Al2O3 doped nanobioactive glass-ceramics (nBGC) with non-toxic and antibacterial activity. The main crystalline phase of sodium calcium silicate was transformed to sodium calcium aluminium silicate by increasing the Al2O3 concentration, it was confirmed by X-ray diffraction (XRD) and Fourier Transform Infra-Red (FTIR) spectroscopy analysis. The density and mechanical strength were increased as 2.63–3.12 g/cm3 and 75–105 MPa, respectively for the sample x = 0 to 10 wt.%. The formation of hydroxyapatite (HAp) was proved by XRD, FTIR, and FESEM (Field Emission Scanning Electron Microscope) with EDS (Energy Dispersive X-ray Spectroscopy) analysis through variations in pH, zeta potential, and degradation behavior. Higher cell viability percentage was attained as >99% for L929 cells, outstanding antibacterial activity against E. coli and S. aureus and excellent hydrophilic nature were obtained for the sample nBGC-10Al. Altogether, a higher concentration of Al2O3 in nBGC could enhance the physical and biological properties and it can be used as an excellent candidate for orthopedic applications.

Graphical abstract

Highlights

  • Addition of Al2O3 into (50-x)%SiO2-26%Na2O-16%CaO-4%P2O5-4%MgO-xAl2O3 nanobioactive glass ceramics (nBGC-xAl) by sol–gel method (x = 0, 2, 4, 6, 8 and 10 wt.%] to enhance the physical and biological properties.

  • nBGC-xAl (x = 8 and 10 wt.%) has maximum compressive strength of 105 MPa which is close to the compressive strength of human cortical bone.

  • The sample of nBGC-10Al shows no cytotoxicity behaviour and good biocompatible with L929 fibroblast cells.

  • nBGC-10Al has excellent antibacterial activity on gram-negative (E. coli) and gram-positive (S. aureus) bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mahdy EA, Sahbal KM, Mabrouk M, Beherei HH, Abdel-Monem YK (2021) Enhancement of glass-ceramic performance by TiO2 doping: In vitro cell viability, proliferation, and differentiation. Ceram Int 47(5):6251–6261. https://doi.org/10.1016/j.ceramint.2020.10.203

    Article  CAS  Google Scholar 

  2. Migonney, V (2014) History of biomaterials. Biomaterials, 1–10. https://doi.org/10.1002/9781119043553.ch1

  3. Oliver JN, Su Y, Lu X, Kuo PH, Du J, Zhu D (2019) Bioactive glass coatings on metallic implants for biomedical applications. Bioact Mater 4:261–270. https://doi.org/10.1016/j.bioactmat.2019.09.002

    Article  Google Scholar 

  4. Sola A, Bellucci D, Cannillo V, Cattini A (2011) Bioactive glass coatings: a review. Surf Eng 27:560–572. https://doi.org/10.1179/1743294410Y.0000000008

    Article  CAS  Google Scholar 

  5. Fiume E, Barberi J, Verné E, Baino F (2018) Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J Funct Biomater 9(1):24. https://doi.org/10.3390/jfb9010024

    Article  CAS  Google Scholar 

  6. Basu, B (2017) Biomaterials science and tissue engineering: principles and methods. Cambridge University Press.

  7. Srivastava AK, Pyare R (2012) Characterization of ZnO substituted 45S5 Bioactive glasses and glass-ceramics. J Mater Sci Res 1(2):207. https://doi.org/10.2174/2352094905666150807002628

    Article  CAS  Google Scholar 

  8. Kaur D, Reddy MS, Pandey OP (2021) Synthesis, characterization, drug loading and in-vitro bioactivity studies of rice husk derived SiO2–P2O5–MgO–CaO–SrO bio-active glasses. J Drug Deliv Sci Technol 61:102154. https://doi.org/10.1016/j.jddst.2020.102154

    Article  CAS  Google Scholar 

  9. Mubina MK, Shailajha S, Sankaranarayanan R, Saranya L (2019) In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO2-CaO-Na2O-P2O5 nano bioactive glass ceramics. J Mech Behav Biomed Mater 100:103379. https://doi.org/10.1016/j.jmbbm.2019.103379

    Article  CAS  Google Scholar 

  10. Lee WC, Lim CH, Shi H, Tang LA, Wang Y, Lim CT, Loh KP (2011) “Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS nano 5(no. 9):7334–7341. https://doi.org/10.1021/nn202190c

    Article  CAS  Google Scholar 

  11. Akhavan Omid, Ghaderi Elham, Shahsavar Mahla (2013) “Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells.”. Carbon 59:200–211. https://doi.org/10.1016/j.carbon.2013.03.010

    Article  CAS  Google Scholar 

  12. Akhavan Omid, Ghaderi Elham (2010) “Toxicity of graphene and graphene oxide nanowalls against bacteria.”. ACS nano 4(no. 10):5731–5736. https://doi.org/10.1021/nn101390x

    Article  CAS  Google Scholar 

  13. Akhavan O, Ghaderi E (2012) “Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner.”. Carbon 50(no. 5):1853–1860. https://doi.org/10.1016/j.carbon.2011.12.035

    Article  CAS  Google Scholar 

  14. Vyas VK, Kumar AS, Prasad S, Singh SP, Pyare R (2015) Bioactivity and mechanical behaviour of cobalt oxide-doped bioactive glass. Bull Mater Sci 38(4):957–964. https://doi.org/10.1007/s12034-015-0936-6

    Article  CAS  Google Scholar 

  15. Sharifianjazi F, Moradi M, Abouchenari A, Pakseresht AH, Esmaeilkhanian A, Shokouhimehr M, Asl MS (2020) Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass. Ceram Int 46(14):22674–22682. https://doi.org/10.1016/j.ceramint.2020.06.030

    Article  CAS  Google Scholar 

  16. Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee HA, Sriranganathan N (2014) Synthesis, cytotoxicity and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep 4(1):1–14. https://doi.org/10.1038/srep04392

    Article  CAS  Google Scholar 

  17. Newby PJ, El-Gendy R, Kirkham J, Yang XB, Thompson ID, Boccaccini AR (2011) Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation. J Mater Sci: Mater Med 22(3):557–569. https://doi.org/10.1007/s10856-011-4240-8

    Article  CAS  Google Scholar 

  18. Abd Aladel B, Sabree IK, & Edrees SJ (2019). Effects of MgO wt.% on the structure, mechanical, and biological properties of bioactive glass-ceramics in the SiO2, Na2O, CaO, P2O5, MgO system. Int J Mechanical Engineer Technol 10 (1), 97–106.

  19. Al-Noaman A, Rawlinson SC, Hill RG (2012) The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. J Non-crystalline Solids 358(22):3019–3027. https://doi.org/10.1016/j.jnoncrysol.2012.07.039

    Article  CAS  Google Scholar 

  20. Vallet-Regi M, Salinas AJ, Roman J, Gil M (1999) Effect of magnesium content on the in vitro bioactivity of CaO-MgO-SiO2-P2O5 sol-gel glasses. J Mater Chem 9(2):515–518. https://doi.org/10.1039/A808679F

    Article  CAS  Google Scholar 

  21. Ma J, Chen CZ, Wang DG, Shao X, Wang CZ, Zhang HM (2012) Effect of MgO addition on the crystallization and in vitro bioactivity of glass ceramics in the CaO–MgO–SiO2–P2O5 system. Ceram Int 38(8):6677–6684. https://doi.org/10.1016/j.ceramint.2012.05.056

    Article  CAS  Google Scholar 

  22. Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng: C 29(1):335–340. https://doi.org/10.1016/j.msec.2008.07.004.

    Article  CAS  Google Scholar 

  23. Tripathi H, Hira SK, Kumar AS, Gupta U, Manna PP, Singh SP (2015) Structural characterization and in vitro bioactivity assessment of SiO2–CaO–P2O5–K2O–Al2O3 glass as bioactive ceramic material. Ceram Int 41(9):11756–11769. https://doi.org/10.1016/j.ceramint.2015.05.143

    Article  CAS  Google Scholar 

  24. Elalmiş, Y Effect of Al2O3 Doping on Antibacterial Activity of 45S5 Bioactive Glass. J Turk Chem Soc Sec A: Chem 8 (2), 419–428. https://doi.org/10.18596/jotcsa.835912.

  25. Karakuzu-Ikizler B, Terzioğlu P, Basaran-Elalmis Y, Tekerek BS, Yücel S (2020) Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica. Bioact Mater 5(1):66–73. https://doi.org/10.1016/j.bioactmat.2019.12.007

    Article  Google Scholar 

  26. Sitarz M, Bulat K, Szumera M (2010) Aluminium influence on the crystallization and bioactivity of silico-phosphate glasses from NaCaPO4–SiO2 system. J Non-crystalline Solids 356(4–5):224–231. https://doi.org/10.1016/j.jnoncrysol.2009.11.012

    Article  CAS  Google Scholar 

  27. El-Kheshen AA, Khaliafa FA, Saad EA, Elwan RL (2008) Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceram Int 34(7):1667–1673. https://doi.org/10.1016/j.ceramint.2007.05.016

    Article  CAS  Google Scholar 

  28. Moghanian A, Zohourfazeli M, Tajer MHM (2020) The effect of zirconium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass. J Non-Crystalline Solids 546:120262. https://doi.org/10.1016/j.jnoncrysol.2020.120262

    Article  CAS  Google Scholar 

  29. Majumdar S, Hira SK, Tripathi H, Kumar AS, Manna PP, Singh SP, Krishnamurthy S (2021) Synthesis and characterization of barium-doped bioactive glass with potential anti-inflammatory activity. Ceram Int 47(5):7143–7158. https://doi.org/10.1016/j.ceramint.2020.11.068

    Article  CAS  Google Scholar 

  30. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  31. Mohan Babu M, Syam Prasad P, Venkateswara Rao P, Hima Bindu S, Prasad A, Veeraiah N, Özcan M (2020) Influence of ZrO2 addition on structural and biological activity of phosphate glasses for bone regeneration. Materials 13(18):4058. https://doi.org/10.3390/ma13184058

    Article  CAS  Google Scholar 

  32. Tuangam P, Supanitayanon L, Dechkunakorn S, Anuwongnukroh N, Srikhirin T, Roongrujimek P (2017, November). L929 cell cytotoxicity associated with experimental and commercial dental flosses. In IOP Conference Series: Materials Science and Engineering (Vol. 265, No. 1, p. 012010). IOP Publishing. https://doi.org/10.1088/1757-899x/265/1/012010

  33. Heidari S, Hooshmand T, Yekta BE, Tarlani A, Noshiri N, Tahriri M (2018) Effect of addition of titanium on structural, mechanical and biological properties of 45S5 glass-ceramic. Ceram Int 44(10):11682–11692. https://doi.org/10.1016/j.ceramint.2018.03.245

    Article  CAS  Google Scholar 

  34. Retrieved from: Research Gate (2015). https://www.researchgate.net/post/What-are-all-possible-reasons-for-the-peak-shift-in-X-Ray-Diffraction

  35. Samad HA, Jaafar M, Othman R, Kawashita M, Razak NHA (2011) New bioactive glass-ceramic: synthesis and application in PMMA bone cement composites. Bio-Med Mater Eng 21(4):247–258. https://doi.org/10.3233/bme-2011-0673

    Article  Google Scholar 

  36. Yan W, Liu D, Tan D, Yuan P, Chen M (2012) FTIR spectroscopy study of the structure changes of palygorskite under heating. Spectrochimica Acta Part A: Mol Biomolecular Spectrosc 97:1052–1057. https://doi.org/10.1016/j.saa.2012.07.085

    Article  CAS  Google Scholar 

  37. Lakshmi R, Choudhary R, Ponnamma D, Sadasivuni KK, Swamiappan S (2019) Wollastonite/forsterite composite scaffolds offer better surface for hydroxyapatite formation. Bull Mater Sci 42(3):1–7. https://doi.org/10.1007/s12034-019-1814-4

    Article  CAS  Google Scholar 

  38. Gui H, Li C, Lin C, Zhang Q, Luo Z, Han L, Lu A (2019) Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO. J Eur Ceram Soc 39(4):1397–1410. https://doi.org/10.1016/j.jeurceramsoc.2018.10.002

    Article  CAS  Google Scholar 

  39. Kermani F, Mollazadeh Beidokhti S, Baino F, Gholamzadeh-Virany Z, Mozafari M, Kargozar S (2020) Strontium-and cobalt-doped multicomponent mesoporous bioactive glasses (MBGS) for potential use in bone tissue engineering applications. Materials 13(6):1348. https://doi.org/10.3390/ma13061348

    Article  CAS  Google Scholar 

  40. Khalil EMA, ElBatal HA, Hamdy YM (2008) Investigation of bioactivity of silicate glass-ceramics in the system SiO2-Na2O-CaO-P2O5 containing MgO and TiO2. Trans Indian Ceram Soc 67(3):119–128. https://doi.org/10.1080/0371750X.2008.11078648

    Article  CAS  Google Scholar 

  41. Liu Y, Xue K, Yao S (2019) Structure, degradation and hydroxyapatite conversion of B-doped 58S bioglass and glass-ceramics. J Ceram Soc Jpn 127(4):232–241. https://doi.org/10.2109/jcersj2.18206

    Article  CAS  Google Scholar 

  42. Islam MT, Sharmin N, Rance GA, Titman JJ, Parsons AJ, Hossain KMZ, Ahmed I (2020) The effect of MgO/TiO2 on structural and crystallization behavior of near invert phosphate‐based glasses. J Biomed Mater Res Part B: Appl Biomater 108(3):674–686. https://doi.org/10.1002/jbm.b.34421

    Article  CAS  Google Scholar 

  43. Sarker B, Li W, Zheng K, Detsch R, Boccaccini AR (2016) “Designing porous bone tissue engineering scaffolds with enhanced mechanical properties from composite hydrogels composed of modified alginate, gelatin, and bioactive glass.”. ACS Biomater Sci Eng 2(no. 12):2240–2254. https://doi.org/10.1021/acsbiomaterials.6b00470

    Article  CAS  Google Scholar 

  44. Maximov Maxim, Oana-Cristina Maximov LuminitaCraciun, Denisa Ficai AntonFicai, Ecaterina Andronescu (2021) “Bioactive glass—an extensive study of the preparation and coating methods.”. Coatings 11(no. 11):1386. https://doi.org/10.3390/coatings11111386

    Article  CAS  Google Scholar 

  45. Mondal S, Hoang G, Manivasagan P, Moorthy MS, Nguyen TP, Phan TT, Kim HH, Kim MH, Nam SY, Oh J (2018) Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceram Int 44(13):15735–15746. https://doi.org/10.1016/j.ceramint.2018.05.248

    Article  CAS  Google Scholar 

  46. Kaur G, Kumar V, Baino F, Mauro JC, Pickrell G, Evans I, Bretcanu O (2019) Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater Sci Eng: C 104:109895. https://doi.org/10.1016/j.msec.2019.109895

    Article  CAS  Google Scholar 

  47. Khalil EMA, Youness RA, Amer MS, Taha MA (2018) Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics. Ceram Int 44(7):7867–7876. https://doi.org/10.1016/j.ceramint.2018.01.222

    Article  CAS  Google Scholar 

  48. Kaur P, Singh KJ, Kaur S, Kaur S, Singh AP (2020) Sol-gel derived strontium-doped SiO2–CaO–MgO–P2O5 bioceramics for faster growth of bone like hydroxyapatite and their in vitro study for orthopedic applications. Mater Chem Phys 245:122763. https://doi.org/10.1016/j.matchemphys.2020.122763

    Article  CAS  Google Scholar 

  49. Selvamani, Vijayakumar. “Stabilitystudies on nanomaterials used in drugs.” In Characterization and biology of nanomaterials for drug delivery, pp. 425–444. Elsevier, 2019. https://doi.org/10.1016/B978-0-12-814031-4.00015-5

  50. Lu HH, Pollack SR, Ducheyne P (2000) Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution. J Biomed Mater Res: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 51(1):80–87. https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<80::AID-JBM11>3.0.CO;2-6

    Article  CAS  Google Scholar 

  51. De Oliveira AAR, De Souza DA, Dias LLS, De Carvalho SM, Mansur HS, de Magalhães Pereira M (2013) Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed Mater 8(2):025011. https://doi.org/10.1088/1748-6041/8/2/025011

    Article  CAS  Google Scholar 

  52. Xie F, Gonzalo Juan I, Arango-Ospina M, Riedel R, Boccaccini AR, Ionescu E (2019) Apatite forming ability and dissolution behavior of Boron-and Calcium-Modified Silicon Oxycarbides in comparison to silicate bioactive glass. ACS Biomater Sci Eng 5(10):5337–5347. https://doi.org/10.1021/acsbiomaterials.9b00816

    Article  CAS  Google Scholar 

  53. Yang X, Zhang L, Chen X, Sun X, Yang G, Guo X, Gou Z (2012) Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J Non-crystalline Solids 358(9):1171–1179. https://doi.org/10.1016/j.jnoncrysol.2012.02.005

    Article  CAS  Google Scholar 

  54. Neumann A, Reske T, Held M, Jahnke K, Ragoss C, Maier HR (2004) “Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro.”. J Mater Sci: Mater Med 15(no. 10):1135–1140. https://doi.org/10.1023/B:JMSM.0000046396.14073.92

    Article  CAS  Google Scholar 

  55. Carvalho AL, Vale AC, Sousa MP, Barbosa AM, Egídio Torrado, João F. Mano, Alves NM (2016) “Antibacterial bioadhesive layer-by-layer coatings for orthopedic applications.”. J Mater Chem B 4(no. 32):5385–5393. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  56. Bal B, Sonny, Rahaman MN (2012) “Orthopedic applications of silicon nitride ceramics. Acta Biomaterialia 8(no. 8):2889–2898. https://doi.org/10.1016/j.actbio.2012.04.031

    Article  CAS  Google Scholar 

  57. Gai X, Liu C, Wang G, Qin Y, Fan C, Liu J, Shi Y (2020) “A novel method for evaluating the dynamic biocompatibility of degradable biomaterials based on real-time cell analysis.”. Regenerative Biomater 7(no. 3):321–329. https://doi.org/10.1093/rb/rbaa017

    Article  CAS  Google Scholar 

  58. Moreira CD, Carvalho SM, Mansur HS, Pereira MM (2016) Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng: C 58:1207–1216. https://doi.org/10.1016/j.msec.2015.09.075

    Article  CAS  Google Scholar 

  59. Agac O, Gozutok M, Sasmazel HT, Ozturk A, Park J (2017) Mechanical and biological properties of Al2O3 and TiO2 co-doped zirconia ceramics. Ceram Int 43(13):10434–10441. https://doi.org/10.1016/j.ceramint.2017.05.080

    Article  CAS  Google Scholar 

  60. Kaper JB, Nataro JP, Mobley HL (2004) “Pathogenic escherichia coli.”. Nat Rev Microbiol 2(no. 2):123–140. https://doi.org/10.1038/nrmicro818

    Article  CAS  Google Scholar 

  61. Cheung G, Bae JS, Otto M (2021) Pathogenicity and virulence of Staphylococcus aureus. Virulence 12(1):547–569. https://doi.org/10.1080/21505594.2021.1878688

    Article  CAS  Google Scholar 

  62. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):1–20. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  63. Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV (2017) Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomaterialia 59:2–11. https://doi.org/10.1016/j.actbio.2017.06.046

    Article  CAS  Google Scholar 

  64. Singh G, Kumar S, Sharma SK, Sharma M, Singh VP, Vaish R (2019) Antibacterial and photocatalytic active transparent TiO2 crystallized CaO–BaO–B2O3–Al2O3–TiO2–ZnO glass nanocomposites. J Am Ceram Soc 102(6):3378–3390. https://doi.org/10.1111/jace.16199

    Article  CAS  Google Scholar 

  65. Rheima AM, Anber AA, Abdullah HI, Ismail AH (2021) Synthesis of alpha-gamma aluminum oxide nanocomposite via Electrochemical Method for Antibacterial Activity. Nano Biomed Eng 13(1):1–5. https://doi.org/10.5101/nbe.v13i1.p1-5

    Article  CAS  Google Scholar 

  66. Naik MM, Naik HB, Nagaraju G, Vinuth M, Vinu K, Rashmi SK (2018) Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J Mater Sci: Mater Electron 29(23):20395–20414. https://doi.org/10.1007/s10854-018-0174-y

    Article  CAS  Google Scholar 

  67. Huang, Kai, Shu Cai, Guohua Xu, Xinyu Ye, Ying Dou, Mengguo Ren, Xuexin Wang (2013) “Preparation and characterization of mesoporous 45S5 bioactive glass–ceramic coatings on magnesium alloy for corrosion protection.”. J Alloy Compd 580:290–297. https://doi.org/10.1016/j.jallcom.2013.05.103

    Article  CAS  Google Scholar 

  68. Jaggessar A, Mathew A, Tesfamichael T, Wang H, Yan C, Yarlagadda PK (2019) “Bacteria death and osteoblast metabolic activity correlated to hydrothermally synthesised TiO2 surface properties.”. Molecules 24(no. 7):1201. https://doi.org/10.3390/molecules24071201

    Article  CAS  Google Scholar 

  69. Cappi B, Neuss S, Salber J, Telle R, Knüchel R, Fischer H (2010) “Cytocompatibility of high strength non‐oxide ceramics.”. J Biomed Mater Res Part A: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 93(no. 1):67–76. https://doi.org/10.1002/jbm.a.32527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-FIST sponsored XRD laboratory in the Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu and gratefully acknowledge our sincere thanks to the Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli for providing lab facilities of bioactivity test and antibacterial study. And our hearty thanks to CeNSE, IISc, Bangalore for FESEM & EDS and Micro UTM analysis. I am grateful to The South India Textile Research Association (SITRA), Coimbatore for the cytocompatibility study. Special thanks to OriginPro, Version 2021b. OriginLab Corporation, Northampton, MA, USA. Our sincere thanks to Central Leather Research Institute (CLRI) for Contact Angle Measurement.

Author information

Authors and Affiliations

Authors

Contributions

We declare that the authorship of all authors has been confirmed and each author made a significant contribution to the article. K.M.M.S.: conceptualization, methodology, validation, formal analysis, writing - original draft, visualization; S.S.: conceptualization, investigation, visualization; R.S.: software, validation, formal analysis, writing - review & editing; M.I.: formal analysis, validation.

Corresponding author

Correspondence to S. Shailajha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kairon Mubina, M.S., Shailajha, S., Sankaranarayanan, R. et al. Bone formation with high bacterial inhibition and low toxicity behavior by melding of Al2O3 on nanobioactive glass ceramics via sol-gel process. J Sol-Gel Sci Technol 103, 151–171 (2022). https://doi.org/10.1007/s10971-022-05842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05842-9

Keywords

Navigation